نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد فیزیولوژی ورزشی، دانشگاه تهران

2 دانشیار فیزیولوژی ورزشی، دانشگاه تهران

3 استاد ایمونوژنتیک، مرکز تحقیقات غدد درون‌ریز و متابولیسم، دانشگاه علوم پزشکی تهران

4 استادیار فیزیولوژی ورزشی، دانشگاه آیت ا... العظمی بروجردی (ره)

چکیده

هدف از پژوهش حاضر، مطالعة تأثیر دو شیوه تمرین «تناوبی با شدت زیاد» (HIIT) بر بیان ژن «پروتئین غیرجفت‌کنندة یک» (UCP-1) در بافت چربی سفید زیرپوستی موش‌های صحرایی بود. 24 موش صحرایی به سه گروه «کنترل» (هشت‌سر)، «تمرین تناوبی با حجم متوسط» (هشت‌سر) و «تمرین تناوبی با حجم زیاد» (هشت‌سر) تقسیم شدند. آزمودنی‌های گروه‌های تمرینی به‌مدت هشت هفته (پنج جلسه در هفته) در دو شیوه تمرین تناوبی شدید در دو حجم متفاوت (متوسط و زیاد) روی نوارگردان قرار گرفتند. 48 ساعت پس از آخرین جلسة تمرین، آزمودنی‌ها بی‌هوش شدند و بافت چربی زیرپوستی آن‌ها (منطقة ران) برداشته شد. برای اندازه‌گیری بیان ژنِ UCP-1 از روش Real Time–PCR با نمایان‌سازی سایبرگرین استفاده شد. برای تحلیل آماری داده‌ها از آزمون تحلیل واریانس یک طرفه با سطح معناداری کمتر از 05/0 استفاده شد. میزان بیان ژن UCP-1 در گروه «تناوبی شدید با حجم زیاد» در مقایسه با گروه کنترل تفاوت معناداری داشت ((P = 0.04.؛ اما مقدار بیان این ژن در گروه «تناوبی شدید با حجم متوسط» در مقایسه با گروه کنترل تفاوت معناداری نداشت ((P = 0.52. نتایج بیانگر این است که برای دستیابی به گرمازایی غیرلرزشی در بافت چربی سفید، افزایش زیاد حجم تمرین در «تمرینات تناوبی با شدت زیاد» اهمیت زیادی دارد.

کلیدواژه‌ها

موضوعات

  1. Bonet ML, Oliver P, and Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta.2013;1831(5):969-85.
  2. Tiraby C, Langin D. Conversion from white to brown adipocytes: a strategy for the control of fat mass? Trends Endocrin Met.2003;14(10):439-41.
  3. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: Is beige the new brown? Gene Dev.2013;27(3):234-50.
  4. Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta.2014;1842(3):358-69.
  5. Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: A historical perspective. Front Endocrinol. 2011;2(85):1-7.
  6. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown,“brite,” and white adipose tissues. Am J Physiol-Endoc M.2012;302(1): 19-31.
  7. Sluse FE, Jarmuszkiewicz W, Navet R, Douette P, Mathy G, and Sluse-Goffart CM. Mitochondrial UCPs: new insights into regulation and impact. Biochim Biophys Acta.2006;1757(5-6):480-5.
  8. Mujika I. Endurance training: Science and practice. Vitoria-Gasteiz: Unknown Publisher; 2012.
  9. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol.2012;590(5):1077-84.
  10. Laursen PB. Training for intense exercise performance: High‐intensity or high‐volume training? Scand J Med Sci Spor.2010;20(s2):1-10.
  11. Laursen PB,Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med.2002;32(1):53-73.
  12. Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol.2006;575(3):901-11.
  13. Bartlett JD, Close GL, MacLaren DP, Gregson W, Drust B, and Morton JP. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sport Sci.2011;29(6):547-53.
  14. Hunter G, Weinsier R, Bamman M, and Larson D. A role for high intensity exercise on energy balance and weight control. Int J Obesity.1998;22(6):489-93.
  15. Gibala MJ,McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exercise Sport Sci R.2008;36(2):58-63.
  16. Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab.2009;34(3):428-32.
  17. Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, and Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol.2005;98(6):1985-90.
  18. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, and Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J Appl Physiol.2009;106(3):929-34.
  19. Hood MS, Little JP, Tarnopolsky MA, Myslik F, and Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sport Exer.2011;43(10):1849-56.
  20. Larsen S, Danielsen JH, Sondergard SD, Sogaard D, Vigelsoe A, Dybboe R, et al. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Spor.2015;25(1):59-69.
  21. Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, and Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol O.1996;75(1):7-13.
  22. Perry CG, Heigenhauser GJ, Bonen A, and Spriet LL. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab.2008;33(6):1112-23.
  23. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, and Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.J Physiol.2010;588(6):1011-22.
  24. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature.2012;481(7382):463-8.
  25. Daneshyar S, Kordi MR, Gaeini AA, Kadivar M, and Afshari S. The Effect of Endurance Training on Gene Expression of Uncoupling Protein 1(UCP-1) in Retroperitoneal White Adipose Tissue of Male Wistar Rats. RJMS.2015;22(136):35-45. (in Persian).
  26. De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovas. 2013;23(6):582-90.
  27. Reisi j. Effect of 8 weeks resistance training on plasma irisin protein level and muscle FNDC5 and adipose tissue UCP1 genes expression in male rats. SPJ. 2016;7(28):117-30. (In Persian).
  28. Reisi J, Rajabi H, Ghaedi K, Marandi S-M, and Dehkhoda M-R. Effect of Acute Resistance Training on Plasma Irisin Protein Level and Expression of Muscle FNDC5 and Adipose Tissue UCP1 Genes in Male Rats. JIMS.2013;31(256):     1657-66. (In Persian).
  29. Ringholm S, Grunnet Knudsen J, Leick L, Lundgaard A, Munk Nielsen M, and Pilegaard H. PGC-1alpha is required for exercise- and exercise training-induced UCP1 up-regulation in mouse white adipose tissue. PLoS One.2013;8(5): 64123    (1-6).
  30. Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):1115-25.
  31. Mobasher M, Aramesh K, Al-davod S-J, Ganjoyee N-A, Divsalar K, Larijani. Practical solusions of ethical-guideline Implementation in utilization of laboratory animals in the country research. IJDLD. 2008;8(2):185-94.
  32. Wisloff U, Helgerud J, Kemi OJ, and Ellingsen O. Intensity-controlled treadmill running in rats: V̇O2 max and cardiac hypertrophy. Am J Physiol-Heart C.2001;280(3):1301-10.
  33. Camera DM, Anderson MJ, Hawley JA, and Carey AL. Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. Eur J Appl Physiol.2010;109(2):307-16.
  34. Peronnet F, Cleroux J, Perrault H, Cousineau D, de Champlain J, and Nadeau R. Plasma norepinephrine response to exercise before and after training in humans. J Appl Physiol.1981;51(4):812-5.
  35. Zouhal H, Jacob C, Delamarche P, and Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Medicine.2008;38(5):401-23.
  36. Kjær M. Adrenal Gland: Fight or flight implications for exercise and sports, in the endocrine system in sports and exercise. Blackwell Publishing Ltd; 2008.
  37. Viru AA,Viru M. Biochemical monitoring of sport training. Champaign, IL Human Kinetics; 2001.
  38. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61(12):1725-38.
  39. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belen Crujeiras A, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One.2013;8(4): 60563(1-10).
  40. Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, and Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol-Endoc M.2014;307(7):539-52.
  41. Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II, et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocr Metab.2014;99(11): 2154-61.