نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه لرستان

2 دانشیار دانشگاه تربیت مدرس

چکیده

هدف این پژوهش بررسی اثر تمرین استقامتی بر بیان miR-499 بطن چپ بود. بدین منظور 14 رت تحت شرایط کنترل‌شده (دما، چرخه روشنایی و تاریکی و دسترسی آزاد به آب و غذا) نگهداری و بعد از آشناسازی با پروتکل تمرینی به صورت تصادفی به دو گروه کنترل و تجربی تقسیم شدند. گروه تجربی یک برنامه استقامتی 14 هفته‌ای را روی تردمیل اجرا کرد و سپس 48 ساعت پس از پایان آخرین جلسه تمرینی بی‌هوش و تشریح شدند، سپس قلب آنها خارج و بطن چپ جدا شد. میزان هایپرتروفی آن اندازه‌گیری و با استفاده از روشReal time-PCR میزان بیان miR-499 در بطن چپ آنها اندازه‌گیری شد. در پایان با استفاده از آزمون آماری t اطلاعات به دست آمده ارزیابی شد. شاخص‌های ارزیابی هایپرتروفی نشان داد که نسبت وزن بطن چپ به وزن بدن گروه تجربی (18/0±3/2) در مقایسه با گروه کنترل (12/0±049/2) بیشتر و در سطحP=0.05 معنی‌دار بود و نسبت وزن بطن چپ به سطح رویه بدن در گروه تجربی (008/0±168/0) در مقایسه با گروه کنترل (006/0±153/0) بیشتر و در سطح P=0.05 معنی‌دار بود. در نهایت میانگین بیان miR-499 در گروه تمرین کرده بالاتر از گروه کنترل بود (P=.004). به نظر می‌رسدmiR-499 بر هایپرتروفی ناشی از فعالیت استقامتی در قلب به خصوص بطن چپ اثر گذار باشد.

کلیدواژه‌ها

موضوعات

1) Potthoff M J, Olson E N, Bassel-Duby R. Skeletal muscle remodeling. Current Opinion in Rheumatology. 2007; 19: 542-9.
2) Czubryt M P, Olson E N. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res. 2004; 59: 105-24.
3) Hill J A, Olson E N. Cardiac plasticity. N Engl J Med. 2008; 358(13): 1370-80.
4) Weiner R B, Baggish A L. Exercise-induced cardiac remodeling. Progress in Cardiovascular Diseases. 2012; 54(5): 380-6.
5) Pluim B M, Zwinderman A H, Van Der Laarse A, Van Der Wall E E. The athlete’s heart: A meta-analysis of cardiac structure and function. Circulation. 2000; 101(3): 336-44.
6) Williams A H, Liu N, Van Rooij E, Olson E N. MicroRNA control of muscle development and disease. Current Opinion in Cell Biology. 2009; 21(3): 461-9.
7) Callis T E, Wang D Z. Taking microRNAs to heart. Trends Mol Med. 2008; 14(6):       254-60.
8) Van Rooij E, Liu N, Olson E N. MicroRNAs flex their muscles. Trends in Genetics. 2008; 24(4): 159-66.
9) Lee C T, Risom T, Strauss W M. Evolutionary conservation of microRNA regulatory circuits: An examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol. 2007; 26(4): 209-18.
10) Ivey K N, Muth A, Arnold J, King F W, Yeh R F, Fish J E, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008; 2(3):     219-29.
11) Chen J F, Mandel E M, Thomson J M, Wu Q L, Callis T E, Hammond S M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics. 2006; 38(2): 228-33.
12) Zhao Y, Srivastava D, Samal E. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardio genesis. Nature. 2005; 436(7048): 214-20.
13) Costantini D L, Arruda E P, Agarwal P, Kim K H, Zhu Y, Zhu W, et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell. 2005; 123(2): 347-58.
14) Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, Van Laake L W, et al. MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation. 2007; 116(3): 258-67.
15) Shieh J T, Huang Y, Gilmore J, Srivastava D. Elevated miR-499 levels blunt the cardiac stress response. PLoS One. 2011; 6(5): 19481.
16) Van Rooij E, Quiat D, Johnson B A, Sutherland L B, Qi X, Richardson J A, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009; 17(5): 662-73.
17) Wang J X, Jiao J Q, Li Q, Long B, Wang K, Liu J P, et al. MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 2011; 17(1): 71-8.
18) Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogórek B, et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism clinical perspective. Circulation. 2011; 123(12): 1287-96.
19) McCarthy J J, Esser K A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology. 2007; 102(1): 306-13.
20) Safdar A, Abadi A, Akhtar M, Hettinga B P, Tarnopolsky M A. MiRNA in the regulation of Skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 2009; 4(5): 5610.
21) Drummond M J, McCarthy J, Fry C S, Esser K A, Rasmussen B. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab. 2008; 295(6): 1333-40.
22) Nielsen S, Scheele C, Y fanti C, Akerstrom T, Nielsen A R, Pedersen B K, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010; 588(Pt 20): 4029-37.
23) Soci U P, Fernandes T, Hashimoto N Y, Mota G F, Amadeu M A, Rosa K T, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011; 43(11): 665-73.
24) Zhua S S, Mab J Z, Yong Y H, Niu J, Zhang J N. Left ventricular function in physiologic and pathologic hypertrophy in Sprague–Dawley rats. Science & Sports. 2008; 23: 299-305.
25) Seo J S, Lee S Y, Won K J, Kim D J, Sohn D S, Yang K M, et al. Relationship between normal heart size and body indices in Korean. J Korean Med Sci. 2000; 15(6): 641–646.
26) Farriol M, Rossell J, Schwar S. Body surface area in Sprague-Dawley rats. J Anim Physiol a Anim Nutr. 1997; 77: 61-5.
27) Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods. 2001; 25(4): 402-8.
28) Clerk A, Cullingford T E, Fuller S J, Giraldo A, Markou T, Pikkarainen S, et al. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol. 2007; 212(2): 311-22.
29) Seals D R, Hagberg J M, Spina R J, Rogers M A, Schechtman K B, Ehsani A A. Enhanced left ventricular performance in endurance trained older men. Circulation. 1994; 89(1): 198-205.
30) Pelliccia A, Maron M S, Maron B J. Assessment of left ventricular hypertrophy in a trained athlete: Differential diagnosis of physiologic athlete's heart from pathologic hypertrophy. Progress in Cardiovascular Diseases. 2012; 54(5): 387-96.
31) Sluijter J P, Van Mil A, Van Vliet P, Metz C H, Liu J, Doevendans P A, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol. 2010; 30(4): 859-68.
32) Ljubicic V, Joseph A M, Saleem A, Uguccioni G, Collu-Marchese M, Lai R Y J, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging. Biochemical et Biophysical Acta (BBA) - General Subjects. 2010; 1800(3): 223-34.
33) Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics & Bioinformatics. 2009; 7(4): 147-54.
34) Maragkakis M, Alexiou P, Papadopoulos G L, Reczko M, Dalamagas T, Giannopoulos G, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics. 2009; 10(1): 295.
35) Van Rooij E, Sutherland L B, Qi X, Richardson J A, Hill J, Olson E N. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007; 316(5824): 575-9.
36) Miyata S, Minobe W, Bristow M R, Leinwand L A. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res. 2000; 86(4): 386-90.
37) Gupta M, Sueblinvong V, Raman J, Jeevanandam V, Gupta M P. Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J Biol Chem. 2003; 278(45): 44935-48.
38) Barany M. ATPase activity of myosin correlated with speed of muscle shortening. The Journal of General Physiology. 1967; 50(6) Suppl: 197-218.
39) Morkin E. Control of cardiac myosin heavy chain gene expression. Microscopy Research and Technique. 2000; 50(6): 522-31.
40) Christensen T H, Prentice H, Gahlmann R, Kedes L. Regulation of the human cardiac/slow-twitch troponin C gene by multiple, cooperative, cell-type-specific, and MyoD-responsive elements. Mol Cell Biol. 1993; 13(11): 6752-65.
41) Gustafson T A, Markham B E, Morkin E. Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: Measurement of mRNA content using synthetic oligonucleotide probes. Circ Res. 1986; 59(2): 194-201.
42) Grueter C E, Van Rooij E, Johnson B A, DeLeon S M, Sutherland L B, Qi X, et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell. 2012; 149(3): 671-83.
43) فتحی محمد، قراخانلو رضا. تاثیر فعالیت استقامتی بر بیان ژن Hand2 بطن چپ رت‌های نر نژاد ویستار. نشریۀ فیزیولوژی ورزشی. 1394؛ 7‌(25): 68ـ57.
44) فلاح‌محمدی ضیا، نظری حسین. تأثیر 4 هفته تمرین پلیومتریک بر غلظت سرمی فاکتور نروتروفیک مشتق از مغز مردان فعال. نشریۀ فیزیولوژی ورزشی. 1392؛ 5‌(20): 38ـ29.
45) منظمی امیرعباس، رجبی حمید، قراخانلو رضا. تأثیر تمرین استقامتی بر بیان ژن‌های مبادله‌گر سدیم هیدروژن 1 (NHE1)  و هم انتقال‌دهندۀ سدیم بی کربنات 1 (NBC1) در عضلات اسکلتی رت. نشریۀ فیزیولوژی ورزشی. 1393؛ 6‌(22): 68ـ55.