Document Type : Research Paper

Authors

Abstract

The aim of this study was to investigate the effect of endurance training on cardiac expression of miR-499, For this purpose, 14 rats under controlled conditions (temperature, light/dark (12:12) cycle, with ad Libitum access to food and water) were housed and after familiarization with protocol they were randomly assigned into control and Experimental groups. The experimental group performed 14 weeks endurance exercise on motorized treadmill, and then 48 hours after the end of the last session were anesthetized and sacrificed. The heart was removed and then left ventricle was dissected. Real time RT-PCR method was used to determine of expression levels of miR-449 in left ventricle and the obtained data were evaluated using one sample t-test. The hypertrophy evaluation indices showed that the ratio of left ventricle to the body weight in experimental group (2.3±0.18) was significantly (P=0.05) higher in compare control group (2.049±0.12) and the ratio of left ventricle to body surface area in experimental group (0.168±0.008) were significantly (P=0.01) higher in compare with control group (0.153±0.006). Finally, the mean of miR-499 expression of left ventricle in experimental group was significantly (P=0.004) higher than control group. It seems miR-499 expression relate to endurance induce cardiac hypertrophy special in left ventricle. 

Keywords

Main Subjects

1) Potthoff M J, Olson E N, Bassel-Duby R. Skeletal muscle remodeling. Current Opinion in Rheumatology. 2007; 19: 542-9.
2) Czubryt M P, Olson E N. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res. 2004; 59: 105-24.
3) Hill J A, Olson E N. Cardiac plasticity. N Engl J Med. 2008; 358(13): 1370-80.
4) Weiner R B, Baggish A L. Exercise-induced cardiac remodeling. Progress in Cardiovascular Diseases. 2012; 54(5): 380-6.
5) Pluim B M, Zwinderman A H, Van Der Laarse A, Van Der Wall E E. The athlete’s heart: A meta-analysis of cardiac structure and function. Circulation. 2000; 101(3): 336-44.
6) Williams A H, Liu N, Van Rooij E, Olson E N. MicroRNA control of muscle development and disease. Current Opinion in Cell Biology. 2009; 21(3): 461-9.
7) Callis T E, Wang D Z. Taking microRNAs to heart. Trends Mol Med. 2008; 14(6):       254-60.
8) Van Rooij E, Liu N, Olson E N. MicroRNAs flex their muscles. Trends in Genetics. 2008; 24(4): 159-66.
9) Lee C T, Risom T, Strauss W M. Evolutionary conservation of microRNA regulatory circuits: An examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol. 2007; 26(4): 209-18.
10) Ivey K N, Muth A, Arnold J, King F W, Yeh R F, Fish J E, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008; 2(3):     219-29.
11) Chen J F, Mandel E M, Thomson J M, Wu Q L, Callis T E, Hammond S M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics. 2006; 38(2): 228-33.
12) Zhao Y, Srivastava D, Samal E. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardio genesis. Nature. 2005; 436(7048): 214-20.
13) Costantini D L, Arruda E P, Agarwal P, Kim K H, Zhu Y, Zhu W, et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell. 2005; 123(2): 347-58.
14) Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, Van Laake L W, et al. MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation. 2007; 116(3): 258-67.
15) Shieh J T, Huang Y, Gilmore J, Srivastava D. Elevated miR-499 levels blunt the cardiac stress response. PLoS One. 2011; 6(5): 19481.
16) Van Rooij E, Quiat D, Johnson B A, Sutherland L B, Qi X, Richardson J A, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009; 17(5): 662-73.
17) Wang J X, Jiao J Q, Li Q, Long B, Wang K, Liu J P, et al. MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 2011; 17(1): 71-8.
18) Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogórek B, et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism clinical perspective. Circulation. 2011; 123(12): 1287-96.
19) McCarthy J J, Esser K A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology. 2007; 102(1): 306-13.
20) Safdar A, Abadi A, Akhtar M, Hettinga B P, Tarnopolsky M A. MiRNA in the regulation of Skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 2009; 4(5): 5610.
21) Drummond M J, McCarthy J, Fry C S, Esser K A, Rasmussen B. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab. 2008; 295(6): 1333-40.
22) Nielsen S, Scheele C, Y fanti C, Akerstrom T, Nielsen A R, Pedersen B K, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010; 588(Pt 20): 4029-37.
23) Soci U P, Fernandes T, Hashimoto N Y, Mota G F, Amadeu M A, Rosa K T, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011; 43(11): 665-73.
24) Zhua S S, Mab J Z, Yong Y H, Niu J, Zhang J N. Left ventricular function in physiologic and pathologic hypertrophy in Sprague–Dawley rats. Science & Sports. 2008; 23: 299-305.
25) Seo J S, Lee S Y, Won K J, Kim D J, Sohn D S, Yang K M, et al. Relationship between normal heart size and body indices in Korean. J Korean Med Sci. 2000; 15(6): 641–646.
26) Farriol M, Rossell J, Schwar S. Body surface area in Sprague-Dawley rats. J Anim Physiol a Anim Nutr. 1997; 77: 61-5.
27) Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods. 2001; 25(4): 402-8.
28) Clerk A, Cullingford T E, Fuller S J, Giraldo A, Markou T, Pikkarainen S, et al. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol. 2007; 212(2): 311-22.
29) Seals D R, Hagberg J M, Spina R J, Rogers M A, Schechtman K B, Ehsani A A. Enhanced left ventricular performance in endurance trained older men. Circulation. 1994; 89(1): 198-205.
30) Pelliccia A, Maron M S, Maron B J. Assessment of left ventricular hypertrophy in a trained athlete: Differential diagnosis of physiologic athlete's heart from pathologic hypertrophy. Progress in Cardiovascular Diseases. 2012; 54(5): 387-96.
31) Sluijter J P, Van Mil A, Van Vliet P, Metz C H, Liu J, Doevendans P A, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol. 2010; 30(4): 859-68.
32) Ljubicic V, Joseph A M, Saleem A, Uguccioni G, Collu-Marchese M, Lai R Y J, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging. Biochemical et Biophysical Acta (BBA) - General Subjects. 2010; 1800(3): 223-34.
33) Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics & Bioinformatics. 2009; 7(4): 147-54.
34) Maragkakis M, Alexiou P, Papadopoulos G L, Reczko M, Dalamagas T, Giannopoulos G, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics. 2009; 10(1): 295.
35) Van Rooij E, Sutherland L B, Qi X, Richardson J A, Hill J, Olson E N. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007; 316(5824): 575-9.
36) Miyata S, Minobe W, Bristow M R, Leinwand L A. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res. 2000; 86(4): 386-90.
37) Gupta M, Sueblinvong V, Raman J, Jeevanandam V, Gupta M P. Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J Biol Chem. 2003; 278(45): 44935-48.
38) Barany M. ATPase activity of myosin correlated with speed of muscle shortening. The Journal of General Physiology. 1967; 50(6) Suppl: 197-218.
39) Morkin E. Control of cardiac myosin heavy chain gene expression. Microscopy Research and Technique. 2000; 50(6): 522-31.
40) Christensen T H, Prentice H, Gahlmann R, Kedes L. Regulation of the human cardiac/slow-twitch troponin C gene by multiple, cooperative, cell-type-specific, and MyoD-responsive elements. Mol Cell Biol. 1993; 13(11): 6752-65.
41) Gustafson T A, Markham B E, Morkin E. Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: Measurement of mRNA content using synthetic oligonucleotide probes. Circ Res. 1986; 59(2): 194-201.
42) Grueter C E, Van Rooij E, Johnson B A, DeLeon S M, Sutherland L B, Qi X, et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell. 2012; 149(3): 671-83.
43) فتحی محمد، قراخانلو رضا. تاثیر فعالیت استقامتی بر بیان ژن Hand2 بطن چپ رت‌های نر نژاد ویستار. نشریۀ فیزیولوژی ورزشی. 1394؛ 7‌(25): 68ـ57.
44) فلاح‌محمدی ضیا، نظری حسین. تأثیر 4 هفته تمرین پلیومتریک بر غلظت سرمی فاکتور نروتروفیک مشتق از مغز مردان فعال. نشریۀ فیزیولوژی ورزشی. 1392؛ 5‌(20): 38ـ29.
45) منظمی امیرعباس، رجبی حمید، قراخانلو رضا. تأثیر تمرین استقامتی بر بیان ژن‌های مبادله‌گر سدیم هیدروژن 1 (NHE1)  و هم انتقال‌دهندۀ سدیم بی کربنات 1 (NBC1) در عضلات اسکلتی رت. نشریۀ فیزیولوژی ورزشی. 1393؛ 6‌(22): 68ـ55.