تأثیر چهار هفته تمرین هوازی بر بیان ژن فاکتور تغذیه‌ای مشتق‌شده از سلول‌های گلیال، TNF-α و عوامل شناختی در هیپوکمپ رت‌های مبتلا به بیماری آلزایمر القاشده با آمیلویید بتا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، دانشکدة علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

2 استاد فیزیولوژی ورزشی، دانشکدة علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیارفیزیولوژی ورزشی، دانشکدة علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

4 دکتری فیزیولوژی ورزشی، دانشکدة علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

بیماری آلزایمر شایع‌ترین شکل زوال عقل است که پپتیدهای آمیلوئید بتا نقش برجسته­ای در بیماری­زایی آن ایفا می‌کنند. در سال‌های اخیر ورزش منظم به‌عنوان یکی ­از سازوکارهای غیردارویی مهم برای مقابله با بیماری آلزایمر مطرح شده است. مطالعة حاضر با هدف بررسی تأثیر چهار ­هفته تمرین هوازی بر­ بیان ژن GDNF، TNF-α و عوامل شناختی در رت­های مبتلا به آلزایمر القاشده با آمیلویید بتا انجام شد. 56 سر رت نر ­ویستار هشت‌هفته‌ای با میانگین وزن 20 ± 190 گرم به‌طور تصادفی به چهار گروه تقسیم شدند: گروه­ ورزش، گروه آمیلوییدبتا + ورزش، گروه آمیلوییدبتا و ­گروه کنترل. آمیلوییدبتا ­با استفاده ­از سرنگ­ همیلتون به درون هیپوکمپ تزریق شد و هفت روز بعد از توسعة بیماری آلزایمر در رت­های هر­گروه آزمون ­رفتاری و تمرین از آن‌ها گرفته شد. برای اندازه‌گیری بیان ­ژن GDNF و TNF-α از روش کمّی Real time-PCR استفاده شد. بر­اساس مقایسة سطوح بیان ژن ­در چهار گروه مطالعه‌شده مشخص شد که بیان ژن GDNF در ­بین گروه‌های پژوهش تفاوت معنا‌داری داشت؛ به‌طوری‌که ژن GDNF در گروه تمرین بیشترین و در­گروه آمیلوییدبتا کمترین سطح بیان را­ داشت (P < 0.001). همچنین بیان ژن عامل تومور نکروز آلفا (TNF-α) در بین گروه‌های پژوهش تفاوت معناداری داشت؛ به‌طوری­که ژن TNF-α در گروه آمیلوئید بتا بیشترین و در گروه تمرین کمترین سطح بیان را داشت (P < 0.001). به‌علاوه یادگیری و حافظة فضایی در گروه ورزش به‌‌طور معنا‌داری از گروه آلزایمری شده بهتر بود (P < 0.001). به‌نظر می‌رسد تمرین هوازی می‌تواند نقش­ بسزایی در بهبود یادگیری و همچنین افزایش بیان ژن GDNF و کاهش التهاب از سلول­های گلیال داشته باشد ­که درنهایت به بهتر­شدن حافظه و یادگیری کمک می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of 4 Weeks Aerobic Exercise on Gene Expression of Glial Cell_Derived Neurotrophic Factor, TNF-α and Cognition in Rat’s Hippocampus with Alzheimer's Disease Induced by Amyloid Beta

نویسندگان [English]

  • Peyman Ghasemi 1
  • Reza Gharakhanlo 2
  • Mahdieh Molanouri Shamsi 3
  • Davar Khodadadi 4
1 Ph.D. Student of Sport Physiology, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
2 Professor of Sport Physiology, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
3 Associate Professor of Sport Physiology, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
4 Ph.D. of Sport Physiology, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Alzheimer's disease is the most common form of dementia and amyloid peptides play a prominent role in its pathogenesis. Recently, regular exercise has been considered as one of the most important non-pharmacological mechanisms in contrast with Alzheimer's disease. The aim of this study was to investigate the effect of four weeks' aerobic exercise on gene expression of Glial cell_drived neurotrophic factor and tumor necrosis factor in rat’s hippocampus with Alzheimer's disease induced by Amyloid beta. 56 8-weeks-old male rats with mean±SD weight of 190±20 g was randomly divided into four groups: training group. Amyloid beta + training group, Amyloid beta group and control group. Amyloid beta1-42injected into the hippocampus by Hamilton syringe. Seven days after surgery, rats of each groups were subjected to behavioral testing. Real-Time PCR were used for the measurement of gene expression of Glial cell_drived neurotrophic factor and TNF-α. There is a significant difference between the groups. GDNF Gene expression level in training group was higher and in the Amyloid beta-42 induction group was lower (P<0.001). There is a significant difference between the groups. TNF-α Gene expression level in training group was lower and in the Amyloid beta1-42 induction group was higher (P<0.001). Moreover, spatial learning and memory were significantly better in the exercise + Amyloid beta than Amyloid beta group (P<0.01). It seems that aerobic exercise can have significant role in improving spatial memory, learning and also increasing gene expression of Glial cell_drived neurotrophic factor and reduce inflammation in hippocampus that can help to improve memory and learning. 

کلیدواژه‌ها [English]

  • Alzheimer's disease
  • Aerobic Exercise
  • Glial Cell_Drived Neurotrophic Factor
  • Inflammation
Heneka MT, O'Banion MK. Inflammatory processes in Alzheimer's disease. Journal of Neuroimmunology. 2007;184(1-2):69-91.
Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiological Reviews. 2001;81(2):741-66.
Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61(1):71-90.
Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry. 2008;64(6):484-90.
J.A. Funk, J. Gohlke, A.D. Kraft, C.A. McPherson, J.B. Collins, G.J. Harry Voluntary exercise protects hippocampal neurons from trimethyltin injury: Possible role of interleukin-6 to modulate tumor necrosis factor receptor-mediated neurotoxicity Brain, Behavior, and Immunity. 2011;25:1063-77.
Kesler S, Janelsins M, Koovakkattu D, Palesh O, Mustian K, Morrow G, Dhabhar FS. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun. 2013;30(Suppl):S109–16.
De Felice FG. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest. 2013;123:531–9.
Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012;16:706–22Ohwatashi A, Ikeda S, Harada K, Kamikawa Y, Yoshida A. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat. EXCLI Journal. 2013;12:693.
 Dobos N, Korf J, Luiten P, Eisel U. Neuroinflamma tion in Alzheimer’s disease and Major Depression .Biol Psychiatry. 2010;67:503–4.
Diniz BS, Teixeira AL, Ojopi EB, Talib LL, Mendonça VA, Gattaz WF, Forlenza OV. Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2010;22:1305-11.
Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, et al. The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiology of Disease. 2012;45(3):1153-62.
Lin T-W, Shih Y-H, Chen S-J, Lien C-H, Chang C-Y, Huang T-Y, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiology of Learning and Memory. 2015;118:189-97.
Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nature Reviews Neuroscience. 2002;3(5):383 -94..
Marksteiner J, Kemmler G, Weiss EM, Knaus G, Ullrich C, Mechtcheriakov S, et al. Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging. 2011;32(3):539-40
Straten G, Saur R, Laske C, Gasser T, Annas P, Basun H, et al. Influence of lithium treatment on GDNF serum and CSF concentrations in patients with early Alzheimer's disease. Current Alzheimer Research. 2011;8(8):853-9.
Sullivan AM, O’Keeffe GW. Neurotrophic factor therapy for Parkinson's disease: past, present and future. Neural regeneration Research. 2016;11(2):25-7.
Ohwatashi A, Ikeda S, Harada K, Kamikawa Y, Yoshida A. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat. EXCLI Journal. 2013:12:693-700.
Wick M, Teng L, Mu X, Springer JE, Davis BM. Overexpression of GDNF induces and maintains hyperinnervation of muscle fibers and multiple end-plateformations. Exp Neurol. 2001;171:342-50.
Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu Q-R. Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. Journal of Biological Chemistry. 2011;286(52):45093-102.
Palasz E, Folcik R, Gasiorowska A, Niewiadomski W, Niewiadomska G. Treadmill training lessens dopaminergic deficiency, enhances BDNF and GDNF biosynthesis, and reduces brain inflammation in the MPTP mouse model of Parkinson’s disease. Parkinsonism & Related Disorders. 2018;46:e41.
Campos C, Rocha NB, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Review of Neurotherapeutics. 2016;16(6):723-34.
Afzalpour ME, Chadorneshin HT, Foadoddini M, Eivari HA. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiology & Behavior. 2015;147:78-83.
Piotrowicz Z, Chalimoniuk M, Płoszczyca K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PloS One. 2019 Oct 23;14(10):e0224207.
Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, et al. The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiology of Disease. 2012;45(3):1153-62.
Mohammadpour JD, Hosseinmardi N, Janahmadi M, Fathollahi Y, Motamedi F, Rohampour K. Non-selective NSAIDs improve the amyloid-β-mediated suppression of memory and synaptic plasticity. Pharmacology Biochemistry and Behavior. 2015;132:33-41.
BÜTTNER-ENNEVER, JEAN. “The Rat Brain in Stereotaxic Coordinates, 3rd edn.” Journal of Anatomy vol. 191,Pt 2 (1997): 315–7.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research. 2001;29(9):e45Campos C, Rocha NB, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Review of Neurotherapeutics. 2016;16(6):723-34.
Khorshidahmad T, Tabrizian K, Vakilzadeh G, Nikbin P, Moradi S, Hosseini-Sharifabad A, et al. Interactive effects of a protein kinase AII inhibitor and testosterone on spatial learning in the Morris water maze. Behavioural Brain Research. 2012;228(2):432-9.
McCullough MJ, Gyorkos AM, Spitsbergen JM. Short-term exercise increases GDNF protein levels in the spinal cord of young and old rats. Neuroscience. 2013;240:258-68.
Revilla S, Ursulet S, Álvarez-López MJ, Castro-Freire M, Perpiñá U, García-Mesa Y, et al. Lenti-GDNF gene therapy protects against Alzheimer's disease-like neuropathology in 3xTg‐AD mice and MC65 cells. CNS Neuroscience & Therapeutics. 2014;20(11):961-72.
Azimi M, Gharakhanlou R, Naghdi N, Khodadadi D, Heysieattalab S. Moderate treadmill exercise ameliorates amyloid-β-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1α/FNDC5/BDNF pathway. Peptides. 2018;102:78-88..
Khodadadi D, Gharakhanlou R, Naghdi N, Salimi M, Azimi SM, Shahed A. The effect of 4 weeks of exercise preconditioning on soluble amyloid beta level and memory impairment in rats with Alzheimer's disease induced by Aβ1-42 injection. Razi Journal of Medical Sciences. 2018;24(165):74-84.
Sim Y-J. Treadmill exercise alleviates impairment of spatial learning ability through enhancing cell proliferation in the streptozotocin-induced Alzheimer’s disease rats. Journal of exercise rehabilitation. 2014;10(2):81-8.
Wu H-M, Tzeng N-S, Qian L, Wei S-J, Hu X, Chen S-H, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology. 2009;34(10):2344-57.
Chennaoui M, Drogou C, Gomez-Merino D: Effects of physical training onIL-1beta, IL-6 and IL-1ra concentrations in various brain areas of the rat. Eur Cytokine Netw. 2008;19:8–14.
Dobos N, Korf J, Luiten P, Eisel U. Neuroinflamma tion in Alzheimer’s disease and Major Depression .Biol Psychiatry. 2010;67:503–4.
Colbert LH, Davis JM, Essig DA, Ghaffar A, Mayer EP: Tissue expression and plasma concentrations of TNFalpha, IL-1beta, and IL-6 following treadmill exercise in mice. Int J Sports Med. 2001;22:261–7.
Mota BC, Pereira L, Souza MA, Silva LF, Magni DV, Ferreira AP, et al. Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotox Res. 2012,21:175–84.
Gomes da Silva, Sérgio et al. Exercise-induced hippocampal anti-inflammatory response in aged rats. Journal of neuroinflammation. 2013,10:61. doi:10.1186/1742-2094-10-61.
Godbout JP, Johnson RW: Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am. 2009;29:321–37.
Colbert LH, Davis JM, Essig DA, Ghaffar A, Mayer EP: Tissue expression and plasma concentrations of TNFalpha, IL-1beta, and IL-6 following treadmill exercise in mice. Int J Sports Med. 2001;22:261–7.
Azimi M, Gharakhanlou R, Naghdi N, Khodadadi D, Heysieattalab S. Moderate treadmill exercise ameliorates amyloid-β-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1α/FNDC5/BDNF pathway. Peptides. 2018;102:78-88.
Ye SM, Johnson RW: An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation 2001;9:183–92.
Viviani B, Boraso M: Cytokines and neuronal channels: a molecular basis for age-related decline of neuronal function? Exp Gerontol. 2011;46:199–206Azimi M, Gharakhanlou R, Naghdi N, Khodadadi D, Heysieattalab S. Moderate treadmill exercise ameliorates amyloid-β-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1α/FNDC5/BDNF pathway. Peptides. 2018;102:78-88.
Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, Ongini E: Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci. 2000;12:2265–72.
Krzyszton CP, Sparkman NL, Grant RW, Buchanan JB, Broussard SR, Woods J, Johnson RW: Exacerbated fatigue and motor deficits in interleukin-10 -deficient mice after peripheral immune stimulation. Am J Physiol Regul Integr Comp Physiol. 2008;295:1109–14.
Kennard J, Woodruff-Pak DS. Aging and exercise effects on motor learning and spatial memory. Ageing Res [Internet]. 2011Apr.13 [cited 2021Feb.18];2(1):e2.
Xiong J, Li S, Sun Y, Zhang X, Dong Z, Zhong P, et al. Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation. Biology of Sport. 2015;32(4):295-300.
Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472(7344):466-70
Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H. Exercise and hippocampal memory systems. Trends in Cognitive Sciences. 2019; Apr;23(4):318-33.
Campos C, Rocha NB, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Review of Neurotherapeutics. 2016;16(6):723-34.