Document Type : Research Paper

Author

Department of Exercise physiology, Facuity of sport Science and Heaith, University of Tehran

Abstract

Objective: Heart failure is a clinical syndrome that known as end stage of cardiovascular disease. Oxidative stress is an important pathogenesis factor in development of heart failure. The purpose of this study was investigation of high-intensity interval training on myocardial protein expression of SIRT3, FOXO3a, SOD2 and cardiac function.
Methods and materials: 24 male Wistar rats randomly divided into three groups: health control, heart failure- control and heart failure-high-intensity interval training. Heart failure was induced by 130 mg/kg isoproterenol for 4 days. Exercise training including 5 intervals, 4 minutes at 85-90% maximum oxygen consumption separated with 2 minutes at 50-60% maximum oxygen consumption. 48 h after last session training tissue was collected and protein expression was done by western blotting. Data analysis performed using by SPSS and one-way ANOVA and Tukey post hoc.
Results: The results indicated that SIRT3 (P< 0.001), FOXO3a (P < 0.05) and SOD2 (P< 0.01) significantly reduced after exercise intervention. Additionally, interstitial fibrosis decreases after 8 weeks high intensity interval training concomitant with increase in ejection fraction, fractional shortening and decrease of left ventricular internal systolic (P< 0,001).
Conclusions: High- intensity interval training decreases oxidative stress and improves cardiac function via SIRT3/FOXO3a/SOD2 signaling pathway in rats with heart failure.

Keywords

Main Subjects

  1. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017;121(6):677-694.
  2. Wolfram R, Oguogho A, Palumbo B, Sinzinger H. Enhanced oxidative stress in coronary heart disease and chronic heart failure as indicated by an increased 8-epi-PGF(2alpha). Eur J Heart Fail. 2005;7(2):167-172.
  3. Petrônio MS, Zeraik ML, Fonseca LM, Ximenes VF. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules. 2013;18(3):2821-2839.
  4. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest. 2005;115(5):1221-1231.
  5. Khaper N, Kaur K, Li T, Farahmand F, Singal PK. Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem. 2003;251(1-2):9-15.
  6. Bugger H, Witt CN, Bode C. Mitochondrial sirtuins in the heart. Heart Fail Rev. 2016;21(5):519-528.
  7. Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol. 2015;309(9):H1375-1389.
  8. Wang CC, Lee AS, Liu SH, Chang KC, Shen MY, Chang CT. Spironolactone ameliorates endothelial dysfunction through inhibition of the AGE/RAGE axis in a chronic renal failure rat model. BMC Nephrol. 2019;20(1):351.
  9. Shumin C, Wei X, Yunfeng L, Jiangshui L, Youguang G, Zhongqing C, et al. Genipin alleviates vascular hyperpermeability following hemorrhagic shock by up-regulation of SIRT3/autophagy. Cell Death Discov. 2018;4:52.
  10. Wang X, Huang Y, Zhang K, Chen F, Nie T, Zhao Y, et al. Changes of energy metabolism in failing heart and its regulation by SIRT3. Heart Fail Rev. 2023;28(4):977-992.
  11. Zhang X, Ji R, Liao X, Castillero E, Kennel PJ, Brunjes DL, et al. MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation. 2018;137(9):2052-67.
  12. Song S, Ding Y, Dai GL, Zhang Y, Xu MT, Shen JR, et al. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin. 2021;42(2):230-241.
  13. 13. Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222-234.
  14. Bergaggio E, Riganti C, Garaffo G, Vitale N, Mereu E, Bandini C, et al. IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies. Blood. 2019;133(2):156-167.
  15. Hu B, Tian T, Li XT, Hao PP, Liu WC, Chen YG, et al. Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats. Redox Rep. 2023;28(1):2158526.
  16. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081-1093.
  17. Farah C, Meyer G, André L, Boissière J, Gayrard S, Cazorla O, et al. Moderate exercise prevents impaired Ca2+ handling in heart of CO-exposed rat: implication for sensitivity to ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2010;299(6):H2076-2081.
  18. Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, et al. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol. 2013;108(6):389.
  19. Wang L, Liu Y, Xu T. Aerobic Exercise Improves Depressive-like Behavior in CUMS-Induced Rats via the SIRT3/ROS/NLRP3 Signaling Pathway. Life (Basel). 2023; (8):13.
  20. Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, et al. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab. 2016;23(1):128-142.
  21. Kemi OJ, Wisloff U. High-intensity aerobic exercise training improves the heart in health and disease. J Cardiopulm Rehabil Prev. 2010;30(1):2-11.
  22. Gomes Neto M, Durães AR, Conceição LSR, Saquetto MB, Ellingsen Ø, Carvalho VO. High intensity interval training versus moderate intensity continuous training on exercise capacity and quality of life in patients with heart failure with reduced ejection fraction: A systematic review and meta-analysis. Int J Cardiol. 2018;261:134-141.
  23. Scheer P, Sverakova V, Doubek J, Janeckova K, Uhrikova I, Svoboda P. Basic values of M-mode echocardiographic parameters of the left ventricle in outbreed Wistar rats. Veterinární medicína. 2012;57(1):42-52.
  24. Høydal MA, Wisløff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil. 2007;14(6):753-760.
  25. Ghardashi Afousi A, Gaeini A, Rakhshan K, Naderi N, Darbandi Azar A, Aboutaleb N. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal. 2019;13(2):255-267.
  26. Dawes TJ, Corden B, Cotter S, de Marvao A, Walsh R, Ware JS, et al. Moderate Physical Activity in Healthy Adults Is Associated With Cardiac Remodeling. Circ Cardiovasc Imaging. 2016;9(8):e004712.
  27. Johnson EJ, Dieter BP, Marsh SA. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci. 2015;123:100-106.
  28. Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, et al. High intensity training improves cardiac function in healthy rats. Sci Rep. 2019;9(1):5612.
  29. Sonn SK, Song EJ, Seo S, Kim YY, Um JH, Yeo FJ, et al. Peroxiredoxin 3 deficiency induces cardiac hypertrophy and dysfunction by impaired mitochondrial quality control. Redox Biol. 2022;51:102275.
  30. Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913-2921.
  31. Sun Z, Fang C, Xu S, Wang B, Li D, Liu X, et al. SIRT3 attenuates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome via autophagy. Biochem Pharmacol. 2023;207:115354.
  32. Chen J, Chen S, Zhang B, Liu J. SIRT3 as a potential therapeutic target for heart failure. Pharmacol Res. 2021;165:105432.
  33. Jiang HK, Miao Y, Wang YH, Zhao M, Feng ZH, Yu XJ, et al. Aerobic interval training protects against myocardial infarction-induced oxidative injury by enhancing antioxidase system and mitochondrial biosynthesis. Clin Exp Pharmacol Physiol. 2014;41(3):192-201.
  34. Lamb DA, Moore JH, Mesquita PHC, Smith MA, Vann CG, Osburn SC, et al. Resistance training increases muscle NAD(+) and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany NY). 2020;10(2):9447-60.
  35. Vargas-Ortiz K, Pérez-Vázquez V, Figueroa A, Díaz FJ, Montaño-Ascencio PG, Macías-Cervantes MH. Aerobic training but no resistance training increases SIRT3 in skeletal muscle of sedentary obese male adolescents. Eur J Sport Sci. 2018;18(2):226-34.
  36. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. 2006;576(Pt 2):613-624.
  37. White AT, Schenk S. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab. 2012;303(3):E308-321.
  38. Oka SI, Byun J, Huang CY, Imai N, Ralda G, Zhai P, et al. Nampt Potentiates Antioxidant Defense in Diabetic Cardiomyopathy. Circ Res. 2021;129(1):114-130.
  39. Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010;5(7):e11707.
  40. Casuso RA, Plaza-Díaz J, Ruiz-Ojeda FJ, Aragón-Vela J, Robles-Sanchez C, Nordsborg NB, et al. High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii. PLoS One. 2017;12(10):e0185494.