Document Type : Research Paper

Authors

Abstract

The objective of this study was to perform a narrative review of the literature to determine the adaptations of physiological performance following high-intensity interval training (HIT). High-intensity interval training generally refers to repeated bouts of relatively brief intermittent exercise, often performed with an all-out effort or at intensity close to that which elicits VO2peak. Depending on the training intensity, a single effort may last from a few seconds to up to several minutes, with multiple efforts separated by up to a few minutes of rest or low-intensity exercise. An apparent characteristic of this type of training is the very low training volume. A single high-intensity exercise bout requires the ATP provision of both aerobic and anaerobic metabolism. By increasing the intense frequent bouts and performing in an intermittent practice with recovery among the bouts, the demand of the muscular cells and metabolic pathways will change and then alter contribution of aerobic metabolism for ATP provision. As a result, both aerobic and anaerobic energetic systems are involved in ATP resynthesis. Overall, Physiological adaptations involving in performance improvement following HIT can refer to closed and synchronized interactions of peripheral adaptations (in skeletal muscle), neural (motor unites and CNS) and cardiovascular adaptations. Therefore, by applying this type of training can expect a wide range of metabolic and performance adaptations that result in improvement of both aerobic and anaerobic systems. These findings show that high-intensity interval training with very low volume can cause major adjustments in body and suggests high-intensity interval training is a time-efficient strategy.

Keywords

1) Burgomaster K A, Hughes S C, Heigenhauser G J, Bradwell S N, Gibala M J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985). 2005; 98(6): 1985-90.
2) Burgomaster K A, Howarth K R, Phillips S M, Rakobowchuk M, Macdonald M J, McGee S L, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008; 586(1): 151-60.
3) بیاتی مهدی, قراخانلو رضا, آقاعلی‌نژاد حمید, فرزاد بابک. اثر 4 هفته تمرین تناوبی شدید بر شاخص‌های منتخب فیزیولوژیکی و متابولیکی مردان فعال. پژوهش‌نامۀ فیزیولوژی ورزشی کاربردی. 1389؛ 6(11): 107ـ24.
4) Billaut F, Bishop D. Muscle fatigue in males and females during multiple-sprint exercise. Sports Med. 2009; 39(4): 257-78.
5) Gibala M J, McGee S L. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc Sport Sci Rev. 2008; 36(2): 58-63.
6) بیاتی مهدی. اثر دو تمرین تناوبی شدید (HIT) بر اجرای هوازی و بی هوازی مردان فعال. دانشگاه تربیت مدرس؛ 1388.
7) فرزاد بابک. اثر 4 هفته تمرین تناوبی شدید (HIT) بر اجرای هوازی و بی‌هوازی کشتی‌گیران. دانشگاه تربیت مدرس؛ 1388.
8) قراخانلو رضا، بیاتی مهدی، امانی‌شلمزاری صادق. فیزیولوژی کاربردی ورزش سه‌گانه. تهران: نشر حتمی؛1390. ص. 132.
9) یوسفی وحید. اثر یک‌دورۀ کوتاه‌مدت تمرین تناوبی شدید (HIT) بر اجرای هوازی و بی‌هوازی مردان فعال. دانشگاه تربیت مدرس؛ 1388.
10) Laursen P B, Jenkins D G. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002; 32(1): 53-73.
11) بیاتی مهدی، قراخانلو رضا، آقاعلی‌نژاد حمید، فرزاد بابک. تأثیر برنامۀ تمرین تناوبی سرعتی شدید بر اجرای هوازی و بی‌هوازی مردان تمرین‌نکرده. نشریۀ فیزیولوژی ورزشی. 1390؛ 8(1): 40ـ25.
12) Gibala M J, Little J P, Van Essen M, Wilkin G P, Burgomaster K A, Safdar A, et al. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006; 575(3): 901-11.
13) Dawson B, Fitzsimons M, Green S, Goodman C, Carey M, Cole K. Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training. Eur J Appl Physiol Occup Physiol. 1998; 78(2): 163-9.
14) Linossier M T, Denis C, Dormois D, Geyssant A, Lacour J R. Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol Occup Physiol. 1993; 67(5): 408-14.
15) Gibala M J, Little J P, Macdonald M J, Hawley J A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012; 590 (5): 1077-84.
16) Little J P, Safdar A, Wilkin G P, Tarnopolsky M A, Gibala M J. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. J Physiol. 2010; 588(6): 1011-22.
17) Gurd B J, Perry C G, Heigenhauser G J, Spriet L L, Bonen A. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Appl Physiol Nutr Metab. 2010; 35(3): 350-7.
18) Laursen P B, Blanchard M A, Jenkins D G. Acute high-intensity interval training improves Tvent and peak power output in highly trained males. Canadian Journal of Applied Physiology = Revue Canadienne de Physiologie Appliquee. 2002; 27(4): 336-48.
19) Farzad B, Gharakhanlou R, Agha-Alinejad H, Curby D G, Bayati M, Bahraminejad M, et al. Physiological and performance changes from the addition of a sprint interval program to wrestling training. J Strength Cond Res. 2011; 25(9): 2392-9.
20) Bailey S J, Wilkerson D P, Dimenna F J, Jones A M. Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol (1985). 2009; 106(6): 1875-87.
21) Sperlich B, Zinner C, Heilemann I, Kjendlie P L, Holmberg H C, Mester J. High-intensity interval training improves VO (2peak), maximal lactate accumulation, time trial and competition performance in 9-11-year-old swimmers. Eur J Appl Physiol. 2010; 110(5): 1029-36.
22) Bayati M, Farzad B, Gharakhanlou R, Agha-Alinejad H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med. 2011; 10(3): 571-6.
23) Astorino T A, Allen R P, Roberson D W, Jurancich M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J Strength Cond Res. 2012; 26(1): 138-45.
24) Williams A M, Paterson D H, Kowalchuk J M. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates. J Appl Physiol (1985). 2013; 114(11): 1550-62.
25) Esfandiari S, Sasson Z, Goodman J M. Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise. Eur J Appl Physiol. 2014; 114(2): 331-43.
26) فرزاد بابک، قراخانلو رضا، آقاعلی‌نژاد حمید، بهرامی‌نژاد مرتضی، بیاتی مهدی، محرابیان فرهاد و همکاران. اثر 4 هفته تمرین تناوبی سرعتی فوق‌بیشینه بر برخی عوامل فیزیولوژیک، هورمونی و متابولیک. مجلۀ غدد درون‌ریز و متابولیسم ایران. 1389؛ 12(1): 41ـ34.
27) Rodas G, Ventura J L, Cadefau J A, Cusso R, Parra J. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol. 2000; 82(5-6): 480-6.
28) Barnett C, Carey M, Proietto J, Cerin E, Febbraio M A, Jenkins D. Muscle metabolism during sprint exercise in man: influence of sprint training. J Sci Med Sport. 2004; 7(3): 314-22.
29) Forbes S C, Slade J M, Meyer R A. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Appl Physiol Nutr Metab. 2008; 33(6): 1124-31.
30) MacDougall J D, Hicks A L, MacDonald J R, McKelvie R S, Green H J, Smith K M. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985). 1998; 84(6): 2138-42.
31) Parra J, Cadefau J A, Rodas G, Amigo N, Cusso R. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiologica Scandinavica. 2000; 169(2): 157-65.
32) Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab. 2009; 34(3): 428-32.
33) Weston A R, Myburgh K H, Lindsay F H, Dennis S C, Noakes T D, Hawley J A. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997; 75(1): 7-13.
34) نیکویی روح‌اله. تأثیر تمرین استقامتی بر محتوای پروتئینی و بیان ناقل‌های سارکولمایی و میتوکندریایی لاکتات در رت‌های سالم و دیابتی نوع 2. دانشگاه خوارزمی؛ 1389.
35) Creer A R, Ricard M D, Conlee R K, Hoyt G L, Parcell A C. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists. Int J Sports Med. 2004; 25(2): 92-8.
36) Jacobs I, Esbjornsson M, Sylven C, Holm I, Jansson E. Sprint training effects on muscle myoglobin, enzymes, fiber types, and blood lactate. Med Sci Sports Exerc. 1987; 19(4): 368-74.
37) Jansson E, Esbjornsson M, Holm I, Jacobs I. Increase in the proportion of fast-twitch muscle fibres by sprint training in males. Acta Physiologica Scandinavica. 1990; 140(3): 359-63.
38) Wisloff U, Ellingsen O, Kemi O J. High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev. 2009; 37(3): 139-46.
39) فرزاد بابک، قراخانلو رضا، بیاتی مهدی، آقاعلی‌نژاد حمید، بهرامی‌نژاد مرتضی، محرابیان فرهاد و همکاران. اثر یک دوره تمرین تناوبی شدید بر منتخبی از شاخص‌های عملکرد هوازی، بی‌هوازی و هماتولوژیکی ورزشکاران. نشریۀ فیزیولوژی ورزشی. 1390؛ 8(2): 88ـ69.
40) Laursen P B, Shing C M, Peake J M, Coombes J S, Jenkins D G. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005; 19(3): 527-33.