1. Kalra A, Yetiskul E, Wehrle CJ, Tuma F. Physiology, liver. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available at:
https://pubmed.ncbi.nlm.nih.gov/30571059/
2. Singh AK, Rana HK, Pandey AK. The oxidative stress: causes, free radicals, targets, mechanisms, affected organs, effects, indicators.
Antioxidants Effects in Health. 2022:33-42.
https://doi.org/10.1016/B978-0-12-819096-8.00012-4
3. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology. 2023;97(10):2499-574
. https://doi.org/10.1007/s00204-023-03562-9
4. Husain S, Hillmann K
, Hengst K, Englert H. Effects of a lifestyle intervention on the biomarkers of oxidative stress in non-communicable diseases: a systematic review. Frontiers in Aging. 2023;4:1085511.
http://doi.org/10.3389/fragi.2023.1085511
5. Hu P, Liu Y, Li S, Zhao Y, Gu H, Zong Q, et al. Lactoferrin relieves
Deoxynivalenol-induced oxidative stress and inflammatory response by modulating the Nrf2/MAPK pathways in the liver. Journal of Agricultural and Food Chemistry. 2023;71(21):8182-91
. https://doi.org/10.1021/acs.jafc.3c01035
6. Fanaei H, Mard SA, Sarkaki A, Goudarzi G, Khorsandi L. Gallic acid protects the liver against NAFLD induced by dust exposure and high-fat diet through inhibiting oxidative stress and repressing the inflammatory signaling pathways NF-kβ/TNF-α/IL-6 in Wistar rats. Avicenna Journal of Phytomedicine. 2021;11(5):527
. https://doi.org/10.3389/fphar.2024.1515172
7. Tsopmejio ISN, Yuan J, Diao Z, Fan W, Wei J, Zhao C, et al. Auricularia polytricha and Flammulina velutipes reduce liver injury in DSS-induced Inflammatory Bowel Disease by improving inflammation, oxidative stress, and apoptosis through the regulation of TLR4/NF
-κB signaling pathways. The Journal of Nutritional Biochemistry. 2023;111:109190
. https://doi.org/10.1016/j.fbio.2021.101426
8. Zhang C-h, Xiao Q, Sheng J-q, Liu T-t, Cao Y-q, Xue Y-n, et al. Gegen Qinlian Decoction abates nonalcoholic steatohepatitis associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of toll-like receptor 4 signaling pathways. Biomedicine & Pharmacotherapy. 2020;126:110076
. https://doi.org/10.3389/fcimb.2023.1066053
9. Dang Y, Ma C, Chen K, Chen Y, Jiang M, Hu K, et al. The effects of a high-fat diet on inflammatory bowel disease. Biomolecules. 2023;13(6):905
. https://doi.org/10.3390/biom13060905
10. Yoo W, Zieba JK, Foegeding NJ, Torres TP, Shelton CD, Shealy NG, et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science. 2021;373(6556):813-8.
https://doi.org/10.1126/science.aba3683
11. El-Emam SZ, Soubh AA, Al-Mokaddem AK, Abo El-Ella DM. Geraniol activates Nrf-2/HO-1 signaling pathway mediating protection against oxidative stress-induced apoptosis in hepatic ischemia-reperfusion injury. Naunyn-Schmiedeberg's archives of Pharmacology. 2020;3.58-93:1849
. https://doi.org/10.1007/s00210-020-01887-1
12. Huang J, Shen X-D, Yue S, Zhu J, Gao F, Zhai Y, et al. Adoptive transfer of heme oxygenase-1 (HO-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion
injury. Molecular Medicine. 2014;20:448-55
. https://doi.org/10.2119/molmed.2014.00103
13. Zeng X-F, Varady KA, Wang X-D, Targher G, Byrne CD, Tayyem R, et al. The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: An international multidisciplinary expert consensus. Metabolism. 2024;161:156028
. https://doi.org/10.1016/J.metabol.2024
14. Jamioł-Milc D, Gudan A, Kaźmierczak-Siedlecka K, Hołowko-Ziółek J, Maciejewska-Markiewicz D, Janda-Milczarek K, Stachowska E. Nutritional support for liver diseases. Nutrients. 2023;15
:3640(16)
. https://doi.org/10.3390/nu15163640
15. Younossi ZM, Corey KE, Lim JK. AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: expert review. Gastroenterology. 2021;160(3):912-8
. https://doi.org/10.1053/j.gastro.2020.11.051
16. You Y, Li W, Liu J, Li X, Fu Y, Ma X. Bibliometric review to explore emerging high-intensity interval training in health promotion: a new century picture. Frontiers in Public Health. 2021;9:697633
. https://doi.org/10.3389/fpubh.2021.697633
17. Wu Z-J, Wang Z-Y, Gao H-E, Zhou X-F, Li F-H. Impact of high-intensity interval training on cardiorespiratory fitness, body composition, physical fitness, and metabolic parameters in older adults: A meta-analysis of randomized controlled trials. Experimental Gerontology. 2021;150:111345
. https://doi.org/10.1016/j.exger.2021.111345
18. Martland R
, Mondelli V, Gaughran F, Stubbs B. Can high-intensity interval training improve physical and mental health outcomes? A meta-review of 33 systematic reviews across the lifespan. Journal of Sports Sciences. 2020;38(4):430-69
. https://doi.org/10.1093/schbul/sbaa029.707
19. Abdollahi M, Marandi SM, Ghaedi K, Safaeinejad Z, Kazeminasab F, Shirkhani S, et al. Insulin-related liver pathways and the therapeutic effects of aerobic training, green coffee, and chlorogenic acid supplementation in prediabetic mice. Oxidative Medicine and Cellular Longevity. 2022;2.
https://doi.org/10.4093/dmj.2022.0265
20. Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients. 2019;11(11):2579
. https://doi.org/10.3390/nu11112579
21. Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids in health and disease. 2015;14(1):121.doi:10.1186/s12944-015-0123-1
22. Lian C-Y, Zhai Z-Z, Li Z-F, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chemico-Biological Interactions. 2020;330:109199
. https://doi.org/10.1016/j.cbi.2020.109199
23. Vancells Lujan P, Vinas Esmel E, Sacanella Meseguer E. Overview of non-alcoholic fatty liver disease (NAFLD) and the role of sugary food consumption and other dietary components in its development. Nutrients. 2021;13(5):1442
. https://doi.org/10.3390/nu13051442
24. Consoli V, Sorrenti V, Grosso S, Vanella L. Heme oxygenase-1 signaling
and redox homeostasis in physiopathological conditions. Biomolecules. 2021;11(4):589
. https://doi.org/10.3390/biom11040589
25. Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nature Reviews Immunology. 2021;21(7):411-25
. https://doi.org/10.1038/s41577-020-00491-x
26. Ryter SW. Heme oxygenase-1: an anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders. Antioxidants. 2022;11(3):555
. https://doi.org/10.3390/antiox11030555
27. Minhas R, Bansal Y, Bansal G. Inducible nitric oxide synthase inhibitors: a comprehensive update. Medicinal Research Reviews. 2020;40(3):823-55
. https://doi.org/10.1002/med.21636
28. Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews. 2020;40(1):158-89
. https://doi.org/10.1002/med.215599
29. Basu P, Averitt DL, Maier C, Basu A. The effects of nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) activation in preclinical models of peripheral neuropathic pain. Antioxidants. 2022;11(2):430
. https://doi.org/10.3390/antiox11020430
30. Francisqueti-Ferron FV, Ferron AJT, Garcia JL, Silva CCVdA, Costa MR, Gregolin CS, et al. Basic concepts
on the role of nuclear factor erythroid-derived 2-like 2 (Nrf2) in age-related diseases. International Journal of Molecular Sciences. 2019;20(13):3208
. https://doi.org/10.3390/ijms20133208
31. Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear factor erythroid-2-related factor 2 signaling in the neuropathophysiology of inherited metabolic disorders. Frontiers in Cellular Neuroscience. 2021;15:785057
. https://doi.org/10.3389/fphar.2023.1264842
32. Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear factor erythroid 2-related factor 2 in regulating cancer metabolism. Antioxidants & Redox Signaling. 2020;33(13):966-97.
https://doi.org/10.1089/ars.2020.8024
33. Ma Y, Wu Z, Gao M, Loor J. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. Journal of Dairy Science. 2018;101(6):5329-44
. https://doi.org/10.31168/jds.2017-14128
34. Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-based effects of high-intensity interval training on exercise capacity and health: a review with historical perspective. International Journal of Environmental Research and Public Health. 2021;18(13):7201
. https://doi.org/10.3390/ijerph18137201