Document Type : Research Paper

Authors

1 Assistant Professor in Exercise Physiology, Sport Sciences Research Institute of Iran, Tehran, Iran

2 PhD Student in Exercise Physiology, University of Guilan, Rasht, Iran

3 PhD Student in Exercise Physiology, Ferdowsi University, Mashhad, Iran; Lab Technician, Sport Sciences Research Institute of Iran, Tehran, Iran

4 Researcher (MSc) in Exercise Physiology, Sport Sciences Research Institute of Iran, Tehran, Iran

Abstract

The aim of current study was comparison the maximal fat oxidation and the exercise intensity elicit maximal fat oxidation (Fatmax) between trained and untrained girls. 10 healthy untrained (exercising <3h/week; VO2max, 2.66±0.34 l/min) and 10 healthy trained (basketball players in provincial league; VO2max, 2.83±0.29 l/min) girls, 20-25 years old and normal weight, were selected. All subjects performed an incremental exercise test with 3-min stages to exhaustion on a stationary bike after 10-12 h night fasting. Respiratory gases were measured using an open-circuit gas analyzer system during the test and, substrate oxidation rate, maximal fat oxidation and Fatmax were calculated using stoichiometric equations. ANOVA with repeated measures and independent t-test were used for comparing the variables at p<0.05 level. The mean of MFO and Fatmax were significantly higher in trained in compare to untrained subjects (P<0.05). In compare to untrained, fat oxidation rate was significantly higher in trained subjects at the intensities >55% VO2max (P<0.05). Generally, higher level of fitness status in trained people can improve fat oxidation and reduce carbohydrate oxidation during exercise and then, reduction of fat oxidation can begin at higher intensity; so they depend on carbohydrate sources, later.

Keywords

Main Subjects

1) Achten J, Gleeson M, Jeukendrup A E. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002; 34(1): 92-7.
2) Lima-Silva A E, Bertuzzi R C, Pires F O, Gagliardi J F, Barros R V, Hammond J, et al. Relationship between training status and maximal fat oxidation rate. J Sports Sci Med. 2010; 9(1): 31.
3) Brandou F, Savy-Pacaux A M, Marie J, Brun J F, Mercier J. Comparison of the type of substrate oxidation during exercise between pre and post pubertal markedly obese boys. Int J Sports Med. 2006; 27(5): 407-14.
4) Ashley C D, Kramer M L, Bishop P. Estrogen and substrate metabolism: A review of contradictory research. Sports Med. 2000; 29(4): 221-7.
5) Blaak E E, Van Baak M A, Kemerink G J, Pakbiers M T, Heidendal G A, Saris W H. Beta-adrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am J Physiol. 1994; 267(2 Pt 1): ­306-15.
6) Bogdanis G C, Vangelakoudi A, Maridaki M. Peak fat oxidation rate during walking in sedentary overweight men and women. J Sports Sci Med. 2008; 7(4): 525-31.
7) Gray S C, Devito G, Nimmo M A. Effect of active warm-up on metabolism prior to and during intense dynamic exercise. Med Sci Sports Exerc. 2002; 34(12): 2091-6.
8) Romijn J A, Coyle E F, Sidossis L S, Rosenblatt J, Wolfe R R. Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol. 2000; 88(5): 1707-14.
9) Stephens B R, Cole A S, Mahon A D. The influence of biological maturation on fat and carbohydrate metabolism during exercise in males. Int J Sport Nutr Exerc Metab. 2006; 16(2): 166-79.
10) Riddell M C, Jamnik V K, Iscoe K E, Timmons B W, Gledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol. 2008; 105(2): 742-8.
11) Zunquin G, Theunynck D, Sesboue B, Arhan P, Bougle D. Comparison of fat oxidation during exercise in lean and obese pubertal boys: Clinical implications. Br J Sports Med. 2009; 43(11): 869-70.
12) Brandou F, Savy-Pacaux A M, Marie J, Bauloz M, Maret-Fleuret I, Borrocoso S, et al. Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet. Diabetes Metab. 2005; 31(4 Pt 1): 327-35.
13) Lazzer S, Busti C, Agosti F, De Col A, Pozzo R, Sartorio A. Optimizing fat oxidation through exercise in severely obese Caucasian adolescents. Clin Endocrinol (Oxf). 2007; 67(4): 582-8.
14) محبی حمید، دمیرچی ارسلان، روحانی هادی، شادمهری سعیده. مقایسۀ حداکثر اکسیداسیون چربی (MFO)در دانشجویان زن و مرد غیرورزشکار. نشریۀ المپیک. 1389؛ 43: 2ـ50.
15) Nordby P, Saltin B, Helge J W. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: A role for muscle oxidative capacity? Scand J Med Sci Sports. 2006; 16(3): 209-14.
16) Stisen A B, Stougaard O, Langfort J, Helge J W, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 2006; 98(5): 497-506.
17) Achten J, Jeukendrup A E. Maximal fat oxidation during exercise in trained men. Int J Sports Med. 2003; 24(8): 603-8.
18) Morgan D W, Baldini F D, Martin P E, Kohrt W M. Ten kilometer performance and predicted velocity at VO2max among well-trained male runners. Med Sci Sports Exerc. 1989; 21(1): 78-83.
19) Noakes T D, Myburgh K H, Schall R. Peak treadmill running velocity during the VO2 max test predicts running performance. J Sports Sci. 1990; 8(1): 35-45.
20) Bordenave S, Flavier S, Fedou C, Brun J F, Mercier J. Exercise calorimetry in sedentary patients: Procedures based on short 3 min steps underestimate carbohydrate oxidation and overestimate lipid oxidation. Diabetes Metab. 2007; 33(5): 379-84.
21) Cheneviere X, Malatesta D, Peters E M, Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc. 2009; 41(8): 1615-25.
22) Jeukendrup A E, Wallis G A. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005; 26­(Suppl 1): ­28-37.
23) Bergman B C, Brooks G A. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol. 1999; 86(2): 479-87.
24) Romijn J A, Coyle E F, Sidossis L S, Gastaldelli A, Horowitz J F, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993; 265(3 Pt 1): 380-91.
25) Melzer K, Schutz Y, Kayser B. Normalization of basal metabolic rate for differences in body weight in pregnant women. Eur J Obstet Gynecol Reprod Biol. 2011; 159(2): 480-1.
26) ابراهیمی محسن، رحمانی­نیا فرهاد، دمیرچی ارسلان. اثر شدت فعالیت هوازی بر انرژی دریافتی، اشتها و هورمون‌های تنظیم­کنندۀ انرژی در مردان جوان غیر­فعال. نشریۀ فیزیولوژی ورزشی. 1392؛ 5(20): 28ـ15.
27) Goldberg L, Elliot D L. The effect of exercise on lipid metabolism in men and women. Sports Med. 1987; 4(5): 307-21.
28) Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol. 1987; 62(3): 999-1005.
29) Martin W H, Dalsky G P, Hurley B F, Matthews D E, Bier D M, Hagberg J M, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol. 1993; 265(5 Pt 1): 708-14.
30) Poehlman E T, Gardner A W, Arciero P J, Goran M I, Calles-Escandon J. Effects of endurance training on total fat oxidation in elderly persons. J Appl Physiol. 1994; 76(6): 2281-7.
31) Bonen A, Chabowski A, Luiken J J, Glatz J F. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: Molecular, biochemical, and physiological evidence. Physiology (Bethesda). 2007; 22: 15-29.
32) Odland L M, Howlett R A, Heigenhauser G J, Hultman E, Spriet L L. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. Am J Physiol. 1998; 274(6 Pt 1): 1080-5.
33) Jeukendrup A E. Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem Soc Trans. 2003; 31(Pt 6): 1270-3.
34) صفری موسوی سیدصالح، محبی حمید، دمیرچی ارسلان، هوانلو فریبرز. اثر کاهش محتوای گلیکوژن عضله بر MFO و Fatmax هنگام فعالیت ورزشی در مردان تمرین­نکرده. نشریۀ سوخت­و­ساز و فعالیت ورزشی. 1391؛ 2(2): 113ـ23.
35) Achten J, Jeukendrup A E. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation. J Sports Sci. 2003; 21(12): 1017-24.
36) Mohebbi H, Azizi M. Maximal fat oxidation at the different exercise intensity in obese and normal weight men in the morning and evening. J Hum Sport Exer. 2011; 6(1): 49-58.
37) Achten J, Venables M C, Jeukendrup A E. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metabolism. 2003; 52(6): 747-52.
38) Croci I, Borrani F, Byrne N M, Wood R E, Hickman I J, Cheneviere X, et al. Reproducibility of fatmax and fat oxidation rates during exercise in recreationally trained males. PLoS One. 2014; 9(6): 97930.
39) Rami M, Habibi A, Shakerian S. Comparison between fat max and maximal fat oxidation in active and sedentary males. Jentashapir J Health Res. 2014; 5(2): 53-64.
40) Venables M C, Jeukendrup A E. Endurance training and obesity: Effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008; 40(3):     495-502.
41) روحانی هادی، دمیر‌چی ارسلان، حسن‌نیا صادق، روحانی زهرا. مقایسۀ میزان اکسایش چربی در دامنۀ شدت­های فعالیت دویدن دانشجویان پسر غیرورزشکار. نشریۀ المپیک. 1388؛ 121: 45ـ30.