1.
Kimball S R. Integration of signals generated by nutrients, hormones, and exercise in skeletal muscle.
Am J Clin Nutr. 2014; 99(1): 237-42.
2.
Mann S,
Beedie C,
Balducci S,
Zanuso S,
Allgrove J,
Bertiato F, et al. Changes in insulin sensitivity in response to different modalities of exercise: A review of the evidence.
Diabetes Metab Res Rev. 2014; 30(4): 257-68.
3. Andersen H, Gadeberg P C, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: A stereological magnetic resonance imaging study. Diabetologia. 1997; 40(9): 1062-9.
4.
Chen G Q,
Mou C Y,
Yang Y Q,
Wang S,
Zhao Z W. Exercise training has beneficial anti atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes.
Life Sci. 2011; 89(1-2): 44-9.
5. Haddad F, Adams G R. Selected contribution: Acute cellular and molecular responses to resistance exercise. J Appl Physiol. 2002; 93 (1): 394–403.
6. Murton A J, Constantin D, Greenhaff P L. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta. 2008; 1782(12): 730-43.
7. Molanouri Shamsi M, Hassan ZH, Gharakhanlou R, Quinn L S, Azadmanesh K, Baghersad L, et al. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: Effect of resistance exercise training. Endocrine. 2014; 46(1): 60-9. (In Persian).
8.
Pette D,
Staron R S. Cellular and molecular diversities of mammalian skeletal muscle fibers.
Rev Physiol Biochem Pharmacol. 1990; 116: 1-76.
9.
Berchtold M W,
Brinkmeier H,
Müntener M. Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease.
Physiol Rev. 2000; 80(3): 1215-65.
10.
Swindells M B,
Ikura M. Pre-formation of the semi-open conformation by the apo-calmodulin C-terminal domain and implications binding IQ-motifs.
Nat Struct Biol. 1996; 3(6): 501-4.
11.
Schulz R A,
Yutzey K E. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development.
Dev Biol. 2004; 266(1): 1-16.
12.
Fuentes J J,
Genescà L,
Kingsbury T J,
Cunningham K W,
Pérez-Riba M,
Estivill X, et al. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways.
Hum Mol Genet. 2000; 9(11): 1681-90.
13.
Emrani R,
Rébillard A,
Lefeuvre L,
Gratas-Delamarche A,
Davies K J,
Cillard J. The calcineurin antagonist RCAN1-4 is induced by exhaustive exercise in rat skeletal muscle.
Free Radic Biol Med. 2015; 87: 290-9.
14.
Kaul K,
Apostolopoulou M,
Roden M. Insulin resistance in type 1 diabetes mellitus.
Metabolism. 2015; 64(12): 1629-39.
15.
Oh M,
Rybkin II,
Copeland V,
Czubryt M P,
Shelton J M,
van Rooij E, et al. Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers.
Mol Cell Biol. 2005; 25(15): 6629-38.
16. Ryder J W, Bassel-Duby R, Olson E N, Zierath J R. Skeletal muscle reprogramming by activation of calcineurin improves insulin actionon metabolic pathways. J Biol Chem. 2003; 278(45): 44298-304.
17. Pedersen B K, Akerstrom T C, Nielsen A R, Fischer C P. Role of myokines in exercise and metabolism. J Appl Physiol. 2007; 103 (3): 1093–8.
18. Pedersen B K, Febbraio M A. Muscle as an endocrine Organ: Focus on muscle-derived interleukin-6. Physiol Rev. 2008; 88 (4): 1379-406.
19. Banzet S, Koulmann N, Sanchez H, Serrurier B, Peinnequin A, Alonso A, et al. Contraction-induced interleukin-6 transcription in rat slow-type muscle is partly dependent on calcineurin activation. J Cell Physiol. 2007; 210 (3): 596–601.
20. Tierney M T, Aydogdu T, Sala D, Malecova B, Gatto S, Puri P L, et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med. 2014; 20(10): 1182-6.
21.
Roberts-Wilson T K,
Reddy R N,
Bailey J L,
Zheng B,
Ordas R,
Gooch J L, et al. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes.
Biochim Biophys Acta. 2010; 1803(8): 960-7.
22.Frier B C,Noble E G,Locke M.Diabetes-inducedatrophyisassociatedwithamuscle-specificalterationinNF-kappaBactivationandexpression.Cell Stress Chaperones.2008;13(3):287-96.
23.
Lee S,
Barton E R,
Sweeney H L,
Farrar R P. Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats.
J Appl Physiol. 2004; 96(3): 1097-104.
24.
Molanouri Shamsi M,
Hassan Z M,
Quinn L S,
Gharakhanlou R,
Baghersad L,
Mahdavi M. Time course of IL-15 expression after acute resistance exercise in trained rats: Effect of diabetes and skeletal muscle phenotype.
Endocrine. 2015; 49(2): 396-403. (In Persian).
25.
Hornberger T A Jr,
Farrar R P. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat.
Can J Appl Physiol. 2004; 29(1): 16-31.
26. Rothermel B A, Vega R B, Williams R S. The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc Med. 2003; 13(1): 15-21.
27. Zhao Y, Tozawa Y, Iseki R, Mukai M, Iwata M. Calcineurin activation protects T cells from glucocorticoid-induced apoptosis. Journal of Immunology. 1995; 154(12): 6346-54.
28. Narayan A V, Stadel R, Hahn A B, Bhoiwala D L, Cornielle G, Sarazin E, et al. Redox response of the endogenous calcineurin inhibitor Adapt 78. Free Radic Biol Med. 2005; 39(6): 719-27.
29. Ryeom S, Greenwald R J, Sharpe A H, McKeon F. The threshold pattern of calcineurin-dependent gene expression is altered by loss of the endogenous inhibitor calcipressin. Nat Immunol. 2003; 4(9): 874-81.
30.
Merforth S,
Kuehn L,
Osmers A,
Dahlmann B. Alteration of 20S proteasome-subtypes and proteasome activator PA28 in skeletal muscle of rat after induction of diabetes mellitus.
Int J Biochem Cell Biol. 2003; 35(5): 740-8.
31.
Liu J F,
Chang W Y,
Chan K H,
Tsai W Y,
Lin C L,
Hsu M C. Blood lipid peroxides and muscle damage increased following intensive resistance training of female weightlifters.
Ann N Y Acad Sci. 2005; 1042: 255-61.
32.
Klitgaard H. A model for quantitative strength training of hindlimb muscles of the rat.
J Appl Physiol. 1988; 64(4): 1740-5.
33. Koulmann N, Bigard A X. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflu¨g Arch. 452 (2): 125–39.
34.
Keller C,
Steensberg A,
Pilegaard H,
Osada T,
Saltin B,
Pedersen B K, et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: Influence of muscle glycogen content.
FASEB J. 2001; 15(14): 2748-50.
35. Holmes A G, Watt M J, Carey A L, Febbraio M A. Ionomycin, but not physiologic doses of epinephrine, stimulates skeletal muscle interleukin-6 mRNA expression and protein release. Metabolism. 2004; 53 (11): 1492–5.
36.
Serrano A L,
Baeza-Raja B,
Perdiguero E,
Jardí M,
Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy.
Cell Metab. 2008; 7(1): 33-44.
37. Banzet S, Koulmann N, Simler N, Birot O, Sanchez H, Chapot R, et al. Fibre-type specificity of interleukin-6 gene transcription during muscle contraction inrat: Association with calcineurin activity. J Physiol. 2005; 566(Pt 3): 839-47.