تجزیه‌ و تحلیل سیستمی سازوکارهای مولکولی فعالیت ورزشی در تنظیم بیوسنتز کلسترول: مدل‌سازی شبکه‌های مولکولی برای شناسایی اهداف درمانی

نوع مقاله : مقاله پژوهشی

نویسندگان
1 گروه فیزیولوژی ورزش، دانشکده علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران
2 گروه ژنتیک، مؤسسه رویان اصفهان، اصفهان، ایران
چکیده
تنظیم بیوسنتز کلسترول فرایندی پیچیده و به‌شدت کنترل‌شده است که شامل شبکه‌ای از ژن‌ها می‌شود که سنتز، تنظیم و هومئوستاز سطح کلسترول را هماهنگ و تنظیم می‌کنند. در این مطالعه به تحلیل ژن‌های کلیدی مانند Idi1، Fdps، Sqle، Hmgcs1 پرداخته شده است که در بیوسنتز کلسترول، متابولیسم لیپیدها و سیگنالینگ سلولی نقش‌های اساسی دارند. مدل‌سازی محاسباتی این شبکه‌های تنظیمی می‌تواند تعاملات پیچیده بین این ژن‌ها و مکانیزم‌های تنظیمی آن‌ها را در شرایط مختلف ازجمله رژیم‌های پرچرب، نمایان کند. تحلیل بیوانفورماتیکی ما تأثیر رژیم غذایی پرچرب و فعالیت ورزشی بر این ژن‌ها را بررسی کرد و به بررسی تنظیمات دینامیک مسیرهای بیوسنتز کلسترول و قابلیت تنظیم آن‌ها پرداخت. علاوه بر این، شناسایی اهداف دارویی جدید مانند MicroRNAها می‌تواند به استراتژی‌های درمانی نوآورانه برای مدیریت دیس لیپیدمی منجر شود. با ترکیب رویکردهای زیست‌شناسی سیستمی و ابزارهای محاسباتی، هدف مطالعه حاضر این بود تا درک بهتری از متابولیسم کلسترول به دست آورد و تأثیر فعالیت ورزشی و مداخلات دارویی جدیدی را برای اختلالات لیپیدی شناسایی کند. یافته‌ها نشان داد، مسیرهای بیوسنتز کلسترول با استفاده از داده‌های رونویسی تحلیل شده و ژن‌های هاب درگیر در این مسیرها شناسایی شدند. همچنین تجزیه ‌و تحلیل خوشه‌ای شبکه نتیجه تحلیل‌های GO و KEGG را تأیید کرد. نتیجه‌گیری می‌شود، این مطالعه فهرستی از ژن‌های هاب، مسیرهای مهم و بینش‌های جدید برای توسعه استراتژی‌های مدیریت بیوسنتز کلسترول را ارائه کرده و مکانیسم‌های اساسی پاسخ کبد را روشن می‌کند.
کلیدواژه‌ها

موضوعات


1.     Wang L, Duan W, Ruan C, Liu J, Miyagishi M, Kasim V, Wu S. YY2-CYP51A1 signaling suppresses hepatocellular carcinoma progression by restraining de novo cholesterol biosynthesis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2025;(3):31871. https://doi.org/10.1016/j.bbadis.2025.167658و
2.     Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161-72. https://doi.org/ 10.1016/j.cell.2015.01.036 (Cell / PubMed).
3.     Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Medicine. 2014;44:211-21. https://doi.org/ 10.1007/s40279-013-0110-5 (PubMed).
4.     Noubiap JJN, Nansseu JRN, Bigna JJR, Jingi AM, Kengne AP. Prevalence and incidence of dyslipidaemia among adults in Africa: a systematic review and meta-analysis protocol. BMJ Open. 2015;5(3):e007404. https://doi.org/ 10.1136/bmjopen-2014-007404 (BMJ Open).
5.     Timori M, Ajami M, Shakerian M, Sareh M, Abdollahi M. Assessment of non-communicable diseases status and dietary patterns in patients with dyslipidemia in Alvand city. Iranian Journal of Epidemiology. 2024;20(2):106-17. https://doi.org/ 10.18502/ijre.v20i2.17634.
6.     Brooks GA, Fahey TD, Baldwin KM. Exercise physiology: human bioenergetics and its applications. 2005. https://doi.org/ ISBN-13: 9780072556421.
7.     Liu C, Chen H, Hu B, Shi J, Chen Y, Huang K. New insights into the therapeutic potentials of statins in cancer. Frontiers in Pharmacology. 2023;14:118892. https://doi.org/ 10.3389/fphar.2023.1124596 (Frontiers)
8.     Kenney WL, Wilmore JH, Costill DL. Physiology of sport and exercise: Human Kinetics; 2022. https://doi.org/ISBN-13: 9781718203676
9.     Smart NA, Downes D, Van Der Touw T, Hada S, Dieberg G, Pearson MJ, et al. The effect of exercise training on blood lipids: a systematic review and meta-analysis. Sports Medicine. 2024:1-12. https://doi.org/10.1007/s40279-017-0816-5
10. Long T, Debler EW, Li X. Structural enzymology of cholesterol biosynthesis and storage. Current Opinion in Structural Biology. 2022;74:102369. https://doi.org/ 10.1016/j.sbi.2022.102369.
11. Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduction and Targeted Therapy. 2022;7(1):265. https://doi.org/10.1038/s41392-022-01125-5.
12. Shi Q, Chen J, Zou X, Tang X. Intracellular cholesterol synthesis and transport. Frontiers in Cell and Developmental Biology. 2022;10:819281. https://doi.org/ 10.3389/fcell.2022.819281.
13. Xie H, Weinstein H. Recognition of specific pip2-subtype composition triggers the allosteric control mechanism for selective membrane targeting of cargo loading and release functions of the intracellular sterol transporter stard4. J Mol Bio. 2025;169157. http://dx.doi.org/10.2139/ssrn.5071483
14. Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol homeostasis, mechanisms of molecular pathways, and cardiac health: a current outlook. Current Problems in Cardiology. 2024;49(1):102081. https://doi.org/ 10.1016/j.cpcardiol.2023.102081 (ScienceDirect).
15. Li M, Li D, Tang Y, Wu F, Wang J. CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. International Journal of Molecular Sciences. 2017;18(9):1880. https://doi.org/10.3390/ijms18091880
16. Ma Y, Kan C, Qiu H, Liu Y, Hou N, Han F, et al. Transcriptomic analysis reveals the protective effects of empagliflozin on lipid metabolism in nonalcoholic fatty liver disease. Frontiers in Pharmacology. 2021;12:793586. https://doi.org/ 10.3389/fphar.2021.793826 (Frontiers).
17. Arivazhagan L, Delbare S, Wilson RA, Manigrasso MB, Zhou B, Ruiz HH, et al. Sex differences in murine MASH induced by a fructose-palmitate-cholesterol-enriched diet. JHEP Reports. 2025;7(2):101222. https://doi.org/ 10.1016/j.jhepr.2024.101222.
18. Wang W, Chen Y, Bai L, Zhao S, Wang R, Liu B, et al. Transcriptomic analysis of the liver of cholesterol-fed rabbits reveals altered hepatic lipid metabolism and inflammatory response. Scientific Reports. 2018;8(1):6437. https://doi.org/ 10.1038/s41598-018-24813-1.
19. Cheng CW, Pedicini L, Alcala CM, Deligianni F, Smith J, Murray RD, et al. RNA-seq analysis reveals transcriptome changes in livers from Efcab4b knockout mice. Biochemistry and Biophysics Reports. 2025;41:101944. https://doi.org/10.1016/j.bbrep.2025.101944
20. Melo L, Hagar A, Klaunig J. Gene expression signature of exercise and change of diet on non-alcoholic fatty liver disease in mice. Comparative Exercise Physiology. 2022;18(2):143-54. https://doi.org/10.3920/CEP210033
21. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431-2. https://doi.org/10.1093/bioinformatics/btq675
22. Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology. 2014;8:1-7. https://doi.org/10.1186/1752-0509-8-S4-S11
23. Yon Rhee S, Wood V, Dolinski K, Draghici S. Use and misuse of the gene ontology annotations. Nature Reviews Genetics. 2008;9(7):509-15. https://doi.org/10.1038/nrg2363
24. Aguilera-Olguín M, Leiva A. The LDL receptor: Traffic and function in trophoblast cells under normal and pathological conditions. Placenta. 2022;127:12-9. https://doi.org/ 10.1016/j.placenta.2022.07.013.
25. Zhou F, Sun X. Cholesterol metabolism: a double-edged sword in hepatocellular carcinoma. Frontiers in Cell and Developmental Biology. 2021;9:762828. https://doi.org/10.3389/fcell.2021.707733 (Frontiers).
26. Zhao Z, Li B, Chen Q, Xiang X, Xu X, Han S, et al. Dietary palm oil enhances Sterol regulatory element-binding protein 2-mediated cholesterol biosynthesis through inducing endoplasmic reticulum stress in muscle of large yellow croaker (Larimichthys crocea). British Journal of Nutrition. 2024;131(4):553-66. https://doi.org/10.1017/S0007114523001344.
27. Xia Q, Lu F, Chen Y, Li J, Huang Z, Fang K, et al. 6-Gingerol regulates triglyceride and cholesterol biosynthesis to improve hepatic steatosis in MAFLD by activating the AMPK-SREBPs signaling pathway. Biomedicine & Pharmacotherapy. 2024;170:116060. https://doi.org/10.1016/j.biopha.2023.116060
28. Dao W, Chen H, Ouyang Y, Huang L, Fan X, Miao Y. Molecular characteristics and role of buffalo SREBF2 in triglyceride and cholesterol biosynthesis in mammary epithelial cells. Genes. 2025;16(2):237. https://doi.org/10.3390/genes16020237
29. Ribas V. Role of cholesterol homeostasis in MASH-driven hepatocellular carcinoma: not just a neutral fat. Exploration of Digestive Diseases. 2024;3(3):203-25. https://doi.org/ 10.37349/edd.2024.00048.
30. Xu H, Li Y, Guo N, Wu S, Liu C, Gui Z, et al. Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis. International Journal of Biological Sciences. 2025;21(2):490. https://doi.org/ 10.7150/ijbs.100794.
31. Zhang C, Dai W, Yang S, Wu S, Kong J. Resistance to cholesterol gallstone disease: hepatic cholesterol metabolism. The Journal of Clinical Endocrinology & Metabolism. 2024;109(4):912-23. https://doi.org/10.1210/clinem/dgad528
32. Jang W, Haucke V. ER remodeling via lipid metabolism. Trends in Cell Biology. 2024. https://doi.org/10.1016/j.tcb.2024.01.011 
33. Knoblach B, Rachubinski RA. Peroxisome population control by phosphoinositide signaling at the endoplasmic reticulum‐plasma membrane interface. Traffic. 2024;25(1):e12923. https://doi.org/10.1111/tra.12923
34.    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research. 2000;28(1):27-30. https://doi.org/ 10.1093/nar/28.1.27.
35. Waterham HR, Vaz FM. Cholesterol Biosynthesis Metabolites. Laboratory Guide to the Methods in Biochemical Genetics: Springer; 2024. p. 267-82. https://doi.org/ 10.1007/978-3-031-58819-8_15
36. Zhang X, Chen Y, Sun G, Fei Y, Zhu H, Liu Y, et al. Farnesyl pyrophosphate potentiates dendritic cell migration in autoimmunity through mitochondrial remodelling. Nature Metabolism. 2024:1-20. https://doi.org/10.1038/s42255-024-01149-x
37. Chen M, Yang Y, Chen S, He Z, Du L. Targeting squalene epoxidase in the treatment of metabolic-related diseases: current research and future directions. PeerJ. 2024;12:e18522. https://doi.org/10.7717/peerj.18522
38. Picón DF, Skouta R. Unveiling the therapeutic potential of squalene synthase: deciphering its biochemical mechanism, disease implications, and intriguing ties to ferroptosis. Cancers. 2023;15(14):3731. https://doi.org/10.3390/cancers15143731
39. Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial cholesterol metabolites in a bile acid synthetic pathway drive nonalcoholic fatty liver disease: a revised “two-hit” hypothesis. Cells. 2023;12(10):1434. https://doi.org/10.3390/cells12101434.
40. Russo-Savage L, Schulman IG. Liver X receptors and liver physiology. Biochimica et Biophysica Acta Molecular Basis of Disease. 2021;1867(6):166121. https://doi.org/ j.bbadis.2021.166121/10.1016
41. Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunological Reviews. 2023;317(1):71-94. https://doi.org/ DOI: 10.1111/imr.13200
42. Liu J, Zhang X, Zhang Y, Qian M, Yang M, Yang S, Wang L. Farnesyl diphosphate synthase exacerbates nonalcoholic steatohepatitis via the activation of AHR‐CD36 axis. The FASEB Journal. 2023;37(7):e23035. https://doi.org/ fj.202300590RR/10.1096
43. Liebl M, Olander F, Müller C. Targeting the isoprenoid pathway in choleste biosynthesis: An approach to identify isoprenoid biosynthesis inhibitors. Archiv der Pharmazie. 2025;358(2):e2400807. https://doi.org/10.1002/ardp.202400807.
44. Li X, Li M. Unlocking cholesterol metabolism in metabolic-associated steatotic liver disease: molecular targets and natural product interventions. Pharmaceuticals. 2024;17(8):1073. https://doi.org/10.3390/ph17081073.
45. Kamel EM, Othman SI, Alkhayl FFA, Rudayni HA, Allam AA, Lamsabhi AM. Mechanistic insights into alkaloid-based inhibition of squalene epoxidase: a combined in silico and experimental approach for targeting cholesterol biosynthesis. International Journal of Biological Macromolecules. 2025:140609. https://doi.org/10.1016/j.ijbiomac.2025.140609.
46. Spaulding HR, Yan Z. AMPK and the adaptation to exercise. Annual Review of Physiology. 2022;84(1):209-27. https://doi.org/ 10.1146/annurev-physiol-060721-095517
47. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochemical Journal. 2009;418(2):261-75. https://doi.org/ 10.1042/BJ20082055
48. Lee TV. Dietary Cholesterol and Resistance Training as Countermeasures to Accelerated Muscle Loss 2015. https://doi.org/10.1101/2024.10.21.619494
49. Maleki S, Azarbayjani MA, Riyahi MS, Peeri M, Rahmati AS. The effect of aerobic exercise and ethanolic extract of rice bran on the expression of Acetyl-CoA Carboxylase and HMGCR genes in the liver tissue of rats fed with a high-fat diet. Health. 2024;2(3):89-100. https://doi.org/ 10.61838/kman.hn.2.3.11
50. Kahl CG, Deas C. Exercise-induced anaphylaxis in an air force aviator taking a HMG-CoA reductase inhibitor: a case report and review of the presentation, diagnoses, and treatment. Military Medicine. 2017;182(5-6):e1816-e9. https://doi.org/10.7205/MILMED-D-16-00247.
51. Kugler BA, Maurer A, Fu X, Franczak E, Ernst N, Schwartze K, et al. Aerobic capacity and exercise mediate protection against hepatic steatosis via enhanced bile acid metabolism. bioRxiv. 2024. https://doi.org/ 10.1101/2024.10.21.619494
52. Berglund I, Vesterbekkmo EK, Retterstøl K, Anderssen SA, Singh MAF, Helge JW, et al. The long-term effect of different exercise intensities on high-density lipoprotein cholesterol in older men and women using the per protocol approach: the Generation 100 Study. Mayo Clinic Proceedings: Innovations, Quality & Outcomes. 2021;5(5):859-71. https://doi.org/ 10.1016/j.mayocpiqo.2021.07.002
53. Zhang L, Cao Z, Hong Y, He H, Chen L, Yu Z, Gao Y. Squalene epoxidase: its regulations and links with cancers. International Journal of Molecular Sciences. 2024;25(7):3874. https://doi.org/ 10.3390/ijms25073874
54. Liu J, Liu W, Wan Y, Mao W. Crosstalk between exercise and immunotherapy: current understanding and future directions. Research. 2024;7:0360. https://doi.org/10.34133/research.0360
55. Fan X, Wang H, Wang W, Shen J, Wang Z. Exercise training alleviates cholesterol and lipid accumulation in mice with non-alcoholic steatohepatitis: Reduction of KMT2D-mediated histone methylation of IDI1. Experimental Cell Research. 2024;442(2):114265. https://doi.org/10.1016/j.yexcr.2024.114265
دوره 17، شماره 65
شهریور 1404
صفحه 96-72

  • تاریخ دریافت 03 فروردین 1404
  • تاریخ بازنگری 01 تیر 1404
  • تاریخ پذیرش 13 تیر 1404