Document Type : Research Paper
Authors
- Hamed Barzegar 1
- Ali Akbarnejad 2
- Rahman Soori 2
- Zohreh Mazaheri 3
- Fatemeh Shabkhiz 2
- Elham Vosadi 4
- Kia Ranjbar 1
1 Ph.D. of Sport Physiology, University of Tehran
2 Associated Professor of Sport Physiology, University of Tehran
3 Assistant Professor of Anatomy, University of Tarbiat Modares
4 Assistant Professor of Sport Physiology, Shahrood University of Technology
Abstract
The aim of this study was to investigate the effect of four weeks of high intensity interval training on muscle CTRP15 gene expression and adipocyte fatty acid transporters in the male adult rats. Fourteen Wistar rats (age: eight weeks) were divided into two groups: (1) interval training and (2) control groups. Animals in exercise groups received 4-wk interval training (five sessions per week. From 35 to 55 meters per minute from first week to forth week) that included running on a treadmill and at the same time, the control group did not have any training. The soleus muscle and adipose tissue homogenates and the expression of CTRP15 and FATCD36, FATP1, FABP4 genes were measured by Real-time PCR analysis. Data were analyzed by independent t-test. Statistical differences were considered significant at P
Keywords
Main Subjects
2. Pedersen BK. A muscular twist on the fate of fat. New Engl J Med. 2012; 366(16): 1544-5.
3. Pedersen BK. Muscles and their myokines. Exp Biol. 2011;214(2): 337–46.
4. Ellingsgaard H, Hauselmann I, Schuler B. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011; 17: 1481–89.
5. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol Rev. 2008; 88(4): 1379–406.
6. Kishore U, Reid K B M. C1q: structure, function, and receptors. Immunopharm. 2000; 49(2):159–70.
7. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15): A novel myokine that links skeletal muscle to systemic lipid homeostasis. Biol Chem. 2012; 287:11968–80.
8. Seldin MM, Wong GW. Regulation of tissue crosstalk by skeletal muscle-derived myonectin and other myokines. Adipocyte. 2012;1(4): 200-2.
9. Peterson JM, Mart R, Bond CE. Effect of obesity and exercise on the expression of the novel myokines, myonectin and fibronectin type III domain containing 5, Peer. 2014;2: 31-52.
10. Lim S, Choi SH, Koo BK, Kang SM, Yoon JW, Jang HC, et al. Effects of aerobic exercise training on C1q tumor necrosis factor related protein isoform 5 (myonectin): Association with insulin resistance and mitochondrial DNA density in women. J Clin Endocrinol Metab. 2012; 97(1):88-93.
11. Bonen A, Chabowski A, Luiken JJFP, Glatz JFC. Mechanisms and regulation of protein-mediated cellular fatty acid uptake: Molecular, biochemical, and physiological evidence. Physiology. 2007; 22:15-28.
12. Jain SS, Chabowski A, Snook LA, Schwenk RW, Glatz JFC, Luiken JFFP, et al. Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6. FEBS. 2009;(583): 2294–300.
13. Gamas L. Matafome P. Seiça R. Irisin and myonectin regulation in the insulin resistant muscle: Implications to adipose tissue: Muscle Crosstalk. Diabetes Res. 2015; 8(15):1-8.
14. Bing RJA, Siegel A, Ungar I, Gulbert M. Metabolism of the human heart. Am J Med. 1954; 16: 504-15.
15. Van der Vusse GJJF, Glatz HC. Stam HC, and Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992; 72: 881–940.
16. Bonen A, Chabowski A, Luiken JJFP. Glatz JFC. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: Molecular, biochemical, and physiological evidence (Invited review). Physiology (Bethesda). 2007; 22: 15–29.
17. Bayati M, Gharakhanlou R, Farzad B. Adaptations of physiological performance following high-intensity interval training. JEP. 2015;7(26): 15-32. (In Persian).
18. MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol. 1998; 84: 2138–42.
19. Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med. 2001; 15: 1063–82.
20. Seldin MM, Lei X, Tan SY, Stanson KP, Wei Z, Wong GW. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. Biol chem. 2013; 288(50): 36073–82.
21. Daisuke H, Yuko Y, Kitaoka Y, Hideo H, Arend B. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle. App Physiol Nut Metab. 2013; 38(3): 61-9.