تغییرات استقامت قلبی‌تنفسی و نشانگرهای اکسیداتیو متعاقب مکمل‌یاری کوآنزیم Q10 در ترکیب با تمرین تناوبی با شدت بالا در سالمندان: یک کارآزمایی بالینی تصادفی دوسوکور

نوع مقاله : مقاله پژوهشی

نویسندگان
1 گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران
2 گروه پزشکی، دانشکده سلامت مؤسسه فعالیت بدنی و تغذیه،، دانشگاه دیکین، جیلانگ، استرالیا
چکیده
هدف: با افزایش سن، کاهش عملکرد سیستم آنتی‌اکسیدانی و افزایش استرس اکسیداتیو منجر به افزایش خطر آسیب‌های سلولی و تسریع فرایند سالمندی می‌شود. کوآنزیم Q10 (CoQ10) به‌عنوان یک آنتی‌اکسیدان ممکن است با تقویت دفاع سلولی، سازگاری‌های ناشی از تمرینات شدید را بهبود بخشد؛ بر این اساس، پژوهش حاضر با هدف بررسی اثر مکمل‌یاری CoQ10 بر سازگاری دستگاه آنتی‌اکسیدانی ناشی از تمرینات تناوبی با شدت بالا (HIIT) در سالمندان انجام شد.
مواد و روش ها: در این مطالعه، ۳۸ سالمند (۲۲ مرد و ۱۶ زن، ۶۵ تا ۷۵ سال) به ‌صورت داوطلبانه شرکت کردند و به ‌طور تصادفی به دو گروه تمرین+مکمل CoQ10 و تمرین+پلاسبو تقسیم شدند. شاخص‌ VO2peak و نشانگرهای استرس اکسیداتیو شامل مالون‌دی‌آلدئید (MDA)، سوپراکسید دیسموتاز (SOD)، گلوتاتیون پراکسیداز (GPX) و ظرفیت آنتی‌اکسیدانی کل (TAC)، پیش و پس از هشت هفته تمرین HIIT و مصرف روزانه ۱۰۰ میلی‌گرم مکمل یا دارونما اندازه‌گیری شدند.
یافته ها: نتایج نشان داد، گروه تمرین+مکمل بهبود معناداری را در (0.05>P) VO2peak و شاخص‌های آنتی‌اکسیدانی [MDA (0.05>PSOD (0.05>P) و TAC (0.05>P)] در مقایسه با گروه پلاسبو نشان داد.
نتیجه گیری: براساس یافته‌ها، اثر هم‌افزای مکمل‌یاریCoQ10  با تمرینات HIIT موجب بهبود بیشتر ظرفیت قلبی‌تنفسی و سازگاری آنتی‌اکسیدانی در سالمندان می‌شود.
کلیدواژه‌ها

موضوعات


1. Belardinelli R, Muçaj A, Lacalaprice F, Solenghi M, Seddaiu G, Principi F, et al. Coenzyme Q10 and exercise training in chronic heart failure. European Heart Journal. 2006;27(22):2675-81. https://doi.org/10.1093/eurheartj/ehl158  
2. Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, et al. Aging and age‐related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165-87. https://doi.org/10.1007/s10522-021-09910-5
3. Steenman M, Lande G. Cardiac aging and heart disease in humans. Biophysical Reviews. 2017;9(2):131-7. https://doi.org/10.1007/s12551-017-0255-9
4. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nature Reviews Endocrinology. 2022;18(4):243-58.  https://doi.org/10.1038/s41574-021-00626-7
5. Ferri E, Marzetti E, Calvani R, Picca A, Cesari M, Arosio B. Role of age-related mitochondrial dysfunction in sarcopenia. International Journal of Molecular Sciences. 2020;21(15):5236. https://doi.org/10.3390/ijms21155236
6. Netuveli G, Blane D. Quality of life in older ages. British Medical Bulletin. 2008;85(1):113-26. https://doi.org/10.1093/bmb/ldn003
7. Glasauer A, Chandel NS. Ros. Current Biology. 2013;23(3):R100-R2. https://doi.org/10.1016/j.cub.2012.12.011
8. Mittler R. ROS are good. Trends in plant science. 2017;22(1):11-9. https://doi.org/10.1016/j.tplants.2016.08.002
9. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. International Journal of Molecular Sciences. 2019;20(18):4472. https://doi.org/10.3390/ijms20184472
10. Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International Journal of Molecular Sciences. 2022;23(13):7273. https://doi.org/10.3390/ijms23137273
11. Gil P, Fariñas F, Casado A, López-Fernández E. Malondialdehyde: a possible marker of ageing. Gerontology. 2002;48(4):209-14. https://doi.org/10.1159/000058352
12. Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, et al. Non-enzymatic antioxidants against alzheimer’s disease: prevention, diagnosis and therapy. Antioxidants. 2023;12(1):180. https://doi.org/10.3390/antiox12010180
13. Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;11(3):552. https://doi.org/10.3390/cells11030552
14. Valaei K, Taherkhani S, Arazi H, Suzuki K. Cardiac oxidative stress and the therapeutic approaches to the intake of antioxidant supplements and physical activity. Nutrients. 2021;13(10):3483. https://doi.org/10.3390/nu13103483
15. Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. The Journal of Physiology. 2016;594(18):5081-92. https://doi.org/10.1113/JP270646
16. Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-based effects of high-intensity interval training on exercise capacity and health: a review with historical perspective. International Journal of Environmental Research and Public Health. 2021;18(13):7201. https://doi.org/10.3390/ijerph18137201
17. Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of high intensity exercise on oxidative stress and antioxidant status in untrained humans: a systematic review. Biology. 2021;10(12):1272. https://doi.org/10.3390/biology10121272
18. Powers SK, Goldstein E, Schrager M, Ji LL. Exercise training and skeletal muscle antioxidant enzymes: an update. Antioxidants. 2023;12(1):39. https://doi.org/10.3390/antiox12010039
19. Zhou Z, Chen C, Teo E-C, Zhang Y, Huang J, Xu Y, Gu Y. Intracellular oxidative stress induced by physical exercise in adults: systematic review and meta-analysis. Antioxidants. 2022; 11(9). https://doi.org/10.3390/antiox11091751
20. Daniela M, Catalina L, Ilie O, Paula M, Daniel-Andrei I, Ioana B. Effects of exercise training on the autonomic nervous system with a focus on anti-inflammatory and antioxidants effects. Antioxidants. 2022;11(2):350. https://doi.org/10.3390/antiox11020350
21. Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of high intensity exercise on oxidative stress and antioxidant status in untrained humans: a systematic review. Biology. 2021; 10(12). https://doi.org/10.3390/biology10121272
22. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery. 2021;20(9):689-709. https://doi.org/10.1038/s41573-021-00233-1
23. Aaseth J, Alexander J, Alehagen U. Coenzyme Q10 supplementation – In ageing and disease. Mechanisms of Ageing and Development. 2021;197:111521. https://doi.org/10.1016/j.mad.2021.111521
24. de la Bella-Garzón R, Fernández-Portero C, Alarcón D, Amián JG, López-Lluch G. Levels of plasma coenzyme Q10 are associated with physical capacity and cardiovascular risk in the elderly. Antioxidants. 2022;11(2):279. https://doi.org/10.3390/antiox11020279
25. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Frontiers in Physiology. 2018;9:44. https://doi.org/10.3389/fphys.2018.00044
26. Pala R, Beyaz F, Tuzcu M, Er B, Sahin N, Cinar V, Sahin K. The effects of coenzyme Q10 on oxidative stress and heat shock proteins in rats subjected to acute and chronic exercise. J Exerc Nutrition Biochem. 2018;22(3):14-20. https://doi.org/10.3390/app15052618
27. Andreani C, Bartolacci C, Guescini M, Battistelli M, Stocchi V, Orlando F, et al. Combination of coenzyme Q(10) intake and moderate physical activity counteracts mitochondrial dysfunctions in a SAMP8 mouse model. Oxid Med Cell Longev. 2018;2018:8936251. https://doi.org/10.1155/2018/8936251
28. Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. Journal of Clinical Epidemiology. 1993;46(2):153-62. https://doi.org/10.1016/0895-4356(93)90053-4
29. Craig C, Marshall A, Sjostrom M, Bauman A, Lee P, Macfarlane D, et al. International physical activity questionnaire-short form. J Am Coll Health. 2017;65(7):492-501.
30. Golding LA, Myers CR, Sinning WE. Y's way to physical fitness: the complete guide to fitness testing and instruction. (No Title). 1989.
31. Reljic D, Wittmann F, Fischer JE. Effects of low-volume high-intensity interval training in a community setting: a pilot study. European Journal of Applied Physiology. 2018;118:1153-67. https://doi.org/10.1007/s00421-018-3845-8
32. Abdollahzad H, Alipour B, Aghdashi MA, Jafarabadi MA. Coenzyme Q10 supplementation in patients with rheumatoid arthritis: are there any effects on cardiovascular risk factors? European Journal of Integrative Medicine. 2015;7(5):534-9. https://doi.org/10.1016/j.eujim.2015.09.003
33. Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, et al. Effects of coenzyme Q10 supplementation on biomarkers of oxidative stress in adults: a GRADE-Assessed systematic review and updated meta-analysis of randomized controlled trials. Antioxidants. 2022;11(7):1360. https://doi.org/10.1007/s00394-015-1042-7
34. Raygan F, Rezavandi Z, Dadkhah Tehrani S, Farrokhian A, Asemi Z. The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. European Journal of Nutrition. 2016;55(8):2357-64. https://doi.org/10.1007/s00394-015-1042-7
35. Sangouni AA, Taghdir M, Mirahmadi J, Sepandi M, Parastouei K. Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: a randomized clinical trial. Nutr J. 2022;21(1):62. https://doi.org/10.1186/s12937-022-00816-7
36. Bouaziz W, Malgoyre A, Schmitt E, Lang P-O, Vogel T, Kanagaratnam L. Effect of high-intensity interval training and continuous endurance training on peak oxygen uptake among seniors aged 65 or older: A meta-analysis of randomized controlled trials. International Journal of Clinical Practice. 2020;74(6):e13490. https://doi.org/10.1111/ijcp.13490
37. Poon ET-C, Waris W, Sze-Tak HR, and Wong SH-S. Interval training versus moderate-intensity continuous training for cardiorespiratory fitness improvements in middle-aged and older adults: a systematic review and meta-analysis. Journal of Sports Sciences. 2021;39(17):1996-2005. https://doi.org/10.1080/02640414.2021.1912453
38. Lindner R, Raj IS, Yang AWH, Zaman S, Larsen B, Denham J. Moderate to vigorous-intensity continuous training versus highintensity interval training for improving VO2max in women: a systematic review and meta-analysis. International Journal of Sports Medicine. 2023;44(07):484-95. https://doi.org/10.1055/a-2044-8952
39. Yasul Y, Yılmaz B, Şenel Ö, Kurt D, Akbulut T, Çalıkuşu A, et al. Evaluating the impact of coenzyme Q10 and high-intensity interval training on lactate threshold and Plasma blood gases in rats: a randomized controlled trial. European Journal of Applied Physiology. 2025. https://doi.org/10.1007/s00421-025-05756-8
40. Kunching S, Nararatwanchai T, Chalermchai T, Wongsupasawat K. Impacts of coenzyme Q10 supplementation on body composition and exercise performance in overweight and class1 obesity. Asia-Pacific Journal of Science and Technology. 2022;27(06):APST-27-06-2. https://doi.org/10.14456/apst.2022.84
41. Di Lorenzo A, Iannuzzo G, Parlato A, Cuomo G, Testa C, Coppola M, et al. Clinical evidence for Q10 coenzyme supplementation in heart failure: from energetics to functional improvement. J Clin Med. 2020;9(5). https://doi.org/10.3390/jcm9051266
42. Mantle D, Hargreaves IP, Domingo JC, Castro-Marrero J. Mitochondrial dysfunction and coenzyme q10 supplementation in post-viral fatigue syndrome: an overview. International Journal of Molecular Sciences. 2024; 25(1). https://doi.org/10.3390/ijms25010574
43. Zeng Z, Centner C, Gollhofer A, König D. Effects of dietary strategies on exercise-induced oxidative stress: a narrative review of human studies. Antioxidants. 2021; 10(4). https://doi.org/10.3390/ijms25010574
44. Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, et al. Effects of coenzyme Q10 supplementation on biomarkers of oxidative stress in adults: a GRADE-assessed systematic review and updated meta-analysis of randomized controlled trials. Antioxidants (Basel). 2022;11(7). https://doi.org/10.3390/antiox11071360
45. Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr. 2020;8(4):1766-76. https://doi.org/10.1002/fsn3.1492
46. Sedaghat A, Samadi M, Shirvani H, Sepandi M, Tahmasebi W. Coenzyme Q10 supplementation and oxidative stress parameters: an updated systematic review and meta-analysis of randomized controlled clinical trials. Asian Journal of Sports Medicine. 2022;13(3). https://doi.org/10.5812/asjsm-131308
47. Zhang Y, Huang X, Liu N, Liu M, Sun C, Qi B, et al. Discovering the potential value of coenzyme Q10 in oxidative stress: enlightenment from a synthesis of clinical evidence based on various population. Front Pharmacol. 2022;13:936233. https://doi.org/10.3389/fphar.2022.936233
48. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine. 2010;48(6):749-62. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
49. Akbari A, Mobini GR, Agah S, Morvaridzadeh M, Omidi A, Potter E, et al. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol. 2020;76(11):1483-99. https://doi.org/10.1007/s00228-020-02919-8
50. Mousavinejad E, Ghaffari MA, Riahi F, Hajmohammadi M, Tiznobeyk Z, Mousavinejad M. Coenzyme Q10 supplementation reduces oxidative stress and decreases antioxidant enzyme activity in children with autism spectrum disorders. Psychiatry Research. 2018;265:62-9. https://doi.org/10.1016/j.psychres.2018.03.061
51. Okudan N, Belviranli M, Torlak S. Coenzyme Q10 does not prevent exercise-induced muscle damage and oxidative stress in sedentary men. J Sports Med Phys Fitness. 2018;58(6):889-94. https://doi.org/10.23736/s0022-4707.17.07146-8
52. Akbari A, Mobini GR, Agah S, Morvaridzadeh M, Omidi A, Potter E, et al. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol. 2020;76(11):1483-99. https://doi.org/10.1007/s00228-020-02919-8
53. Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC. Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants. 2021;10(4). https://doi.org/10.3390/antiox10040520
54. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Frontiers in Physiology. 2018;9:2018. https://doi.org/10.3389/fphys.2018.00044
55. Dabbaghi Varnousfaderani S, Musazadeh V, Ghalichi F, Kavyani Z, Razmjouei S, Faghfouri AH, et al. Alleviating effects of coenzyme Q10 supplements on biomarkers of inflammation and oxidative stress: results from an umbrella meta-analysis. Frontiers in Pharmacology. 2023;14:2023. https://doi.org/10.3389/fphar.2023.1191290  
56. Done AJ, Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biology. 2016;10:191-9. https://doi.org/10.1016/j.redox.2016.10.003 
57. Bogdanis GC, Stavrinou P, Fatouros IG, Philippou A, Chatzinikolaou A, Draganidis D, et al. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol. 2013;61:171-7. https://doi.org/10.1016/j.fct.2013.05.046  
58. Portela FS, Malheiro LFL, Oliveira CA, Mercês É AB, De Benedictis LM, De Benedictis JM, et al. High-intensity interval training improves hepatic redox status via Nrf2 downstream pathways and reduced CYP2E1 expression in female rats with cisplatin-induced hepatotoxicity. Food Chem Toxicol. 2025;196:115234. https://doi.org/10.1016/j.fct.2024.115234 
59. Tucker PS, Briskey DR, Scanlan AT, Coombes JS, Dalbo VJ. High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease. Free Radic Biol Med. 2015;89:466-72. https://doi.org/10.1016/j.freeradbiomed.2015.07.162
60.  
دوره 17، شماره 66
شهریور 1404
صفحه 33-17

  • تاریخ دریافت 01 تیر 1404
  • تاریخ بازنگری 21 شهریور 1404
  • تاریخ پذیرش 22 شهریور 1404