نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، دانشگاه شهرکرد

2 استاد فیزیولوژی ورزشی، دانشگاه شهرکرد

3 دانشیار فیزیولوژی ورزشی، دانشگاه شهرکرد

4 استادیار بیوشیمی، دانشگاه شهرکرد

چکیده

یکیازپیامدهایمهم وشایعدرافرادسالمند،آتروفیعضلانی وابستهبهسنیاهمانسارکوپنیاست.سارکوپنیاباکاهش چشمگیردرقدرتوتودةعضلانیهمراه است. هدف از انجام این پژوهش، بررسی تأثیر تمرین مقاومتی شدید و متوسط بر بیان miR-1، miR-206 بافت عضله و IGF-1 سرم موش­های صحرایی نر سالمند نژاد ویستار بود. 30 سر موش­ صحرایی نر نژاد ویستار (23 ماه) به‌صورت تصادفی در دو گروه تجربی و یک گروه کنترل شامل گروه تمرین مقاومتی با شدت متوسط (تعداد = نُه)، تمرین مقاومتی با شدت زیاد (تعداد = هشت) و گروه کنترل (تعداد = هشت) قرار گرفتند. تمرین مقاومتی شامل هشت هفته تمرین مقاومتی نردبان با شدت زیاد (80 درصد از MVCC) و شدت متوسط (60 درصد از MVCC) و پنج روز در هفته بود. بعد از دورة تمرین، بیانmiR-1  و miR-206 به روش RT–PCR در عضلات نعلی و خم‌کنندة دراز شست پا و IGF-1 در سرم اندازه­گیری شد. تجزیه‌وتحلیل آماری با استفاده از آزمون آنوای یک‌طرفه با سطح معنا­داری (P < 0.05) انجام شد. نتایج نشان داد که بیان miR-1 و miR-206 در دو گروه مقاومتی شدید و مقاومتی متوسط نسبت به گروه کنترل پایین­تر و غلظت IGF-1 در دو گروه مقاومتی شدید و مقاومتی متوسط نسبت به گروه کنترل به‌طور معنا­داری بیشتر بود (P < 0.05). تمرین مقاومتی شدید در عضلة خم‌کنندة دراز شست پا در هر دو متغیر miR-1 و miR-206 تأثیر بیشتری داشت و در متغیر IGF-1 نیز تأثیر مداخلة قدرتی شدید بیشتر از مداخلة دیگر بود. به‌نظر می­رسدتمرین مقاومتیبا شدت­های متوسط و زیاد می­تواند باعث تغییر در سطوح استراحتی برخی میکروRNAهای مرتبط با آتروفی عضلانی (miR-1 و miR-206) و سطوح سرمی پروتئین هدف آن‌ها (IGF-1) و احتمالاً جلوگیری از سارکوپنیا در افراد سالمند شود.

کلیدواژه‌ها

موضوعات

  1. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris T. Sarcopenia: Etiology, clinical consequences, intervention, and assessment. Osteoporosis international. 2010;21(4):543-59.
  2. Walrand S, Guillet C, Salles J, Cano N, Boirie Y. Physiopathological mechanism of sarcopenia. Clinics in geriatric medicine. 2011;27(3):365-85.
  3. Boirie Y. Physiopathological mechanism of sarcopenia. The Journal of Nutrition, Health and Aging. 2009;13(8):717-23.
  4. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Annals of rehabilitation medicine. 2015;39(2):155-62.
  5. Philippou A, Maridaki M, Halapas A, Koutsilieris M. The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology. In Vivo. 2007;21(1):45-54.
  6. Hitachi K, Tsuchida K. Role of microRNAs in skeletal muscle hypertrophy. Frontiers in physiology. 2014; 16;4:408:1-7.
  7. Machida S, Booth FW. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proceedings of the Nutrition Society. 2004;63(2):      337-40.
  8. Huygens W, Thomis MA, Peeters MW, Aerssens J, Janssen R, Vlietinck RF, et al. Linkage of myostatin pathway genes with knee strength in humans. Physiological genomics. 2004;17(3):264-70.
  9. Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology. 2005;20(4):232-8.
  10. Cappon J, Brasel J, Mohan S, Cooper D. Effect of brief exercise on circulating insulin-like growth factor I. Journal of applied physiology. 1994;76(6):2490-6.
  11. Walker KS, Kambadur R, Sharma M, Smith HK. Resistance training alters plasma myostatin but not IGF-1 in healthy men. Medicine and science in sports and exercise. 2004;36(5):787-93.
  12. Seo D-I, Jun T-W, Park K-S, Chang H, So W-Y, Song W. 12 weeks of combined exercise is better than aerobic exercise for increasing growth hormone in middle-aged women. International journal of sport nutrition and exercise metabolism. 2010;20(1):21-6.
  13. Wang XH. MicroRNA in myogenesis and muscle atrophy. Current opinion in clinical nutrition and metabolic care. 2013; 16(3), p.258-66.
  14. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97.
  15. Aoi W, Sakuma K. Does regulation of skeletal muscle function involve circulating microRNAs? Frontiers in physiology. 2014;5: p.39.
  16. De Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Current Biology. 2010; 20(24):   2159-68.
  17. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature genetics. 2006; 38(2), 228-33.
  18. McCarthy JJ. The MyomiR network in skeletal muscle plasticity. Exercise and sport sciences reviews. 2011;39(3): 150-4.
  19. O'Neill C, Kiely AP, Coakley MF, Manning S, Long-Smith CM. Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer's disease. : Portland Press Limited; 2012. p. 721-7.
  20. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nature cell biology. 2001; 3(11), 1009-13.
  21. Spangenburg E, Booth F. Molecular regulation of individual skeletal muscle fibre types. Acta physiologica Scandinavica. 2003;178(4):413-24.
  22. Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. British medical bulletin. 2010;95(1):139-59.
  23. Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. Journal of the neurological sciences. 1988;    84(2-3): 275-94.
  24. Klitgaard H, Bergman O, Betto R, Salviati G, Schiaffino S, Clausen T, et al. Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflügers Archiv. 1990; 416(4): 470-2.
  25. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of applied physiology. 2007; 102(1): 306-13.
  26. Nielsen S, Scheele C, Yfanti C, Åkerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. The Journal of physiology. 2010; 588(20): 4029-37.
  27. Fallah A, Gharekhanlooi R, Soleimani M, Mojtahed S. The expression of miR-206 in response to one session resistance exercise in fast and slow twitch skeletal muscles of Wistar male rats. 2016:56-63.
  28. Allen DL, Bandstra ER, Harrison BC, Thorng S, Stodieck LS, Kostenuik PJ, et al. Effects of spaceflight on murine skeletal muscle gene expression. Journal of Applied Physiology. 2009; 106(2): 582-95.
  29. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American Journal of Physiology-Endocrinology and Metabolism. 2008; 295(6): 1333.
  30. Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological genomics. 2011; 43(11): 665-73.
  31. Huang Z, Chen X, Chen D. Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation. Cellular signalling. 2011; 23(9): 1441-6.
  32. de Cássia Marqueti R, Almeida JA, Nakagaki WR, Guzzoni V, Boghi F, Renner A, et al. Resistance training minimizes the biomechanical effects of aging in three different rat tendons. Journal of biomechanics. 2017; 53, 29-35.
  33. Krug AL, Macedo AG, Zago AS, Rush JW, Santos CF, Amaral SL. High‐intensity resistance training attenuates dexamethasone‐induced muscle atrophy. Muscle & nerve. 2016; 53(5): 779-88.
  34. Macedo AG, Krug AL, Herrera NA, Zago AS, Rush JW, Amaral SL. Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. The Journal of steroid biochemistry and molecular biology. 2014; 143: 357-64.
  35. Fathi M. The study of timing series response of microRNA-1 expression to resistance exercise in slow and fast muscles of Wistar male rats. (2013): 5-15.
  36. McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiological genomics. 2009; 39(3): 219-26.
  37. Yan B, Zhu C-D, Guo J-T, Zhao L-H, Zhao J-L. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. Journal of Experimental Biology. 2013; 216(7): 1265-9.
  38. Tofighi A, Dehkordi AJ, Tartibian B, Shourabeh FF, Sinaei M. Effects of aerobic, resistance, and concurrent training on secretion of growth hormone and insulin-like growth dactor-1 in elderly women. Journal of Isfahan Medical School. 2012; 30(184).
  39. Jensen GL. Inflammation: Roles in aging and sarcopenia. Journal of parenteral and enteral nutrition. 2008; 32(6): 656-9.
  40. Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. The international journal of biochemistry & cell biology. 2005; 37(10): 1974-84.
  41. Scheett TP, Nemet D, Stoppani J, Maresh CM, Newcomb R, Cooper DM. The effect of endurance-type exercise training on growth mediators and inflammatory cytokines in pre-pubertal and early pubertal males. Pediatric research. 2002; 52(4): 491.
  42. Pyka G, Lindenberger E, Charette S, Marcus R. Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. Journal of Gerontology. 1994; 49(1), 22-7.
  43. McDonagh MJ, Davies C. Adaptive response of mammalian skeletal muscle to exercise with high loads. European journal of applied physiology and occupational physiology. 1984; 52(2): 139-55.
  44. Hickson R, Rosenkoetter M, Brown M. Strength training effects on aerobic power and short-term endurance. Medicine and Science in Sports and Exercise. 1980; 12(5): 336-9.
  45. Gettman LR, Pollock ML. Circuit weight training: A critical review of its physiological benefits. The Physician and Sportsmedicine. 1981; 9(1): 44-60.