نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار فیزیولوژی ورزش، دانشگاه لرستان

2 دانشیار فیزیولوژی ورزش، دانشگاه ولی‌عصر (عج) رفسنجان

3 دانشجوی دکتری فیزیولوژی ورزش، دانشگاه لرستان

4 کارشناسی‌ارشد فیزیولوژی ورزش، دانشگاه آزاد اسلامی واحد کرمان

چکیده

پروتئین CAP1 یکی از عوامل ساختاری و عملکردی مهم بافت چربی در فرایندهای گوناگون ازجمله اختلال‌های بافت چربی در حالت نوروپاتی دیابت (DN) است و ممکن است تغییرات بافت چربی در اثر تمرین‌های ورزشی را واسطه­گری کند. هدف از انجام پژوهش حاضر بررسی تأثیر فعالیت استقامتی بر سطوح CAP1 بافت چربی احشایی موش­های صحرایی نر دارای نوروپاتی دیابت بود. در این پژوهش، 30 موش صحرایی نر ویستار )10 ± 260 گرم( به روش تصادفی ساده به سه گروه کنترل (C)، نوروپاتی دیابت (DNC) و نوروپاتی دیابتی تمرین (DNT) تقسیم شدند. نوروپاتی دیابت با استفاده از استروپتوزوسین القا و با استفاده از آزمون­های رفتاری درد ارزیابی شد. همچنین، پروتکل تمرین ورزشی شامل شش هفته/پنج جلسه در هفته تمرین استقامتی با شدت متوسط بود. 48 ساعت بعد از آخرین جلسة تمرینی، آزمودنی­ها بی­هوش شدند و بافت چربی احشایی استخراج شد و سطوح CAP1 با روش ایمونوهیستوشیمیایی اندازه‌گیری شد. برای مقایسة گروه‌ها در متغیرهای مطالعه‌شده نیز از تحلیل واریانسیک‌سویه استفاده شد. افزایش معنا­دار سطوح این پروتئین در بافت چربی موش­های دچار نوروپاتی دیابت مشاهده شد ( 0.0001=P )؛ بااین‌حال، تمرین استقامتی به تغییر این سطوح افزایش‌یافته در حالت DN قادر نبود؛ به‌طوری‌که تفات معنا­داری بین گروه­های DNT و DNC مشاهده نشد (0.246P =). به‌طورکلی، به‌نظر می‌رسد سطوح افزایش‌یافتة CAP1 ممکن است پاسخ جبرانی برای افزایش برداشت گلوکز، گرمازایی و آدیپوژنز باشد. همچنین، تأثیرنگذاشتن تمرین‌های استقامتی بر سطوح CAP1 ممکن است به‌دلیل هایپرگلایسمی پایدار در گروه DNT باشد؛ بااین‌حال، تأیید این فرضیه‌ها نیازمند انجام بررسی­های بیشتر است.

کلیدواژه‌ها

موضوعات

  1. Klippel JH, Stone JH, White PH. Primer on the rheumatic diseases. Berlin/Heidelberg: Springer Science & Business Media; 2008. p. 45-6.
  2. Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2012;28(S1):8-14.
  3. Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875-80.
  4. Lupachyk S, Watcho P, Hasanova N ,Julius U ,Obrosova I. Triglyceride, nonesterified fatty acids, and prediabetic neuropathy: Role for oxidative–nitrosative stress. Free Radic. Biol. Med. 2012;52(8):1255-63.
  5. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int J Endocrinol; 2014.
  6. Wiggin TD, Sullivan KA, Pop BR, Amato A, Sima A, et al. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 2009;58(7):1634-40.
  7. Sultana H. Cyclase associated protein CAP in the regulation of the actin cytoskeleton and cell polarity in Dictyostelium discoideum. Koln: Universität zu Köln; 2004. p. 79-80.
  8. Normoyle KP. Cyclase associated protein (CAP) and the physiological disassembly of actin. Illinois: University of Illinois at Urbana-Champaign; 2015. p. 14-6.
  9. Bertling E, et al. Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells. Mol Biol Cell. 2004;15(5):2324-34.
  10. Zhang H, Ghai P, Wu H, Wang C, Field J, et al. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion. J. Biol. Chem. 2013;288(29):20966-77.
  11. Adeghate E. An update on the biology and physiology of resistin. Cell. Mol. Life Sci. 2004;61(19-20):2485-96.
  12. Jamaluddin M, Weakley S, Yao Q, Chen C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012;165(3):622-32.
  13. Lee S, Lee HC, Kwon YW, Lee SE, Cho Y, et al. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes. Cell Metab. 2014;19(3):484-97.
  14. Alm PS, Krook A, de Castro Barbosa T. Maternal obesity legacy: Exercise it away! Diabetologia. 2016;59(1):5-8.
  15. Stallknecht B. Influence of physical training on adipose tissue metabolism–with special focus on effects of insulin and epinephrine. Dan Med Bull. 2004;51(1):1-33.
  16. Calcutt NA. Experimental models of painful diabetic neuropathy. J Neurol Sci. 2004;220(1):137-9.
  17. Chae C, Jung S, An S, Park B, Wang S, et al. RETRACTED: Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus. Neuroscience. 2009;164(4):1665-73.
  18. Hole K, Tjølsen A. Tail Flick test. In: Encyclopedia of pain. London: Springer; 2007. p. 2392-5.
  19. Kohler I, Meier R, Busato A, Neiger-Aeschbacher G, Schatzmann U. Is carbon dioxide (CO2) a useful short acting anaesthetic for small laboratory animals?. Lab. Anim. 1999;33(2):155-61.
  20. Jamali E, Asad MR, Rassouli A. Effect of eight-week endurance exercise on resistin gene expression in visceral adipose tissues in obese rats. JSSU. 2017;25(1):20-31.
  21. Shavandi N, Saremi A, Ghorbani A, Parastesh M. Effects of aerobic training on resistin, adiponectin and insulin resistance index in type 2 diabetic men. Sport Physiology. 2011;3(10):89-102. (In Persian).
  22. Luo L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol. 2002;18(1):601-35.
  23. Lopez JA, Burchfield JG, Blair DH, Mele K, Ng Y, et al. Identification of a distal GLUT4 trafficking event controlled by actin polymerization. Mol. Biol. Cell. 2009;20(17):3918-29.
  24. Takada J, Machado MA, Peres SB, Brito LC, Borges-Silva CN, et al. Neonatal streptozotocin-induced diabetes mellitus: A model of insulin resistance associated with loss of adipose mass. Metabolism. 2007;56(7):977-84.
  25. Gerrits PM, Olson AL, Pessin JE. Regulation of the GLUT4/muscle-fat glucose transporter mRNA in adipose tissue of insulin-deficient diabetic rats. J. Biol. Chem. 1993;268(1):640-4.
  26. Cinti S. Exercise and the adipose organ. Dtsch Z Sportmed. 2016;67:77-83.
  27. Chen Y-W, Li Y-T, Chen YC, Li Z-Y, Hung C-H. Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth Analg. 2012;114(6):1330-7.
  28. Taherabadi SJ, Heidarianpour A, Basereh M. Effects of submaximal endurance training and vitamin D3 supplementation on pain threshold in diabetic rats. Zahedan. J. Res. Med. Sci. 2013;15(7):22-5.
  29. Chen Y-W, Hsieh P-L, Chen Y-C, Hung C-H, Cheng J-T. Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth Analg. 2013;116(2):482-90.
  30. Shankarappa SA, Piedras‐Rentería ES, Stubbs EB. Forced‐exercise delays neuropathic pain in experimental diabetes: Effects on voltage‐activated calcium channels. JNC. 2011;118(2):224-36.
  31. Cobianchi S, Casals-Diaz L, Jaramillo J, Navarro X. Differential effects of activity dependent treatments on axonal regeneration and neuropathic pain after peripheral nerve injury. Exp. Neurol. 2013;240:157-67.
  32. Rossi DM, Valenti VE, Navega MT. Exercise training attenuates acute hyperalgesia in streptozotocin-induced diabetic female rats. Clinics, 2011;66(9):1615-9.