نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه لرستان

2 دانشگاه تربیت مدرس

چکیده

هدف این پژوهش بررسی تأثیر فعالیت استقامتی بر بیان ژن Hand2 بطن چپ بود. بدین منظور 14 رت (نر نژاد ویستار با 20±113گرم و پنج هفته سن) تحت شرایط کنترل‌شده (دما، چرخۀ روشنایی و تاریکی و دسترسی آزاد به آب و غذا) نگهداری و بعد از آشناسازی با پروتکل تمرینی به‌صورت تصادفی به دو گروه کنترل و تجربی تقسیم شدند. گروه تجربی یک برنامۀ استقامتی (14 هفته‌ای) را روی تردمیل اجرا کرد و 48 ساعت پس از پایان آخرین جلسه تمرینی بی‌هوش و تشریح شدند، سپس قلب و بطن چپ آن­ها خارج و با استفاده از روش Real time-PCR میزان بیان ژن Hand2 بطن چپ آن­ها اندازه‌گیری شد. در پایان با استفاده از آزمون آماری t تک نمونه­ایی اطلاعات به‌دست‌آمده ارزیابی شد. نتایج نشان داد میانگین بیان ژن Hand2 بطن چپ گروه تجربی به‌طور معناداری (P=0.007) بیشتر از گروه کنترل بود. بنابراین به نظر می‌رسد ژن Hand2 در نوع هایپرتروفی‌ ایجاد‌شده تأثیرگذار باشد. 

کلیدواژه‌ها

1) Wisloff U, Helgerud J, Kemi OJ, Ellingsen O. Intensity-controlled treadmill running in rats: VO (2 max) and cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2001; 280 (3): 1301-10.
2) Medeiros A, Oliveira EM, Gianolla R, Casarini DE, Negrao CE, Brum PC. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res. 2004; 37 (12):1909-17.
3) Rohini A, Agrawal N, Koyani CN, Singh R. Molecular targets and regulators of cardiac hypertrophy. Pharmacological Research. 2010; 61 (4):269-80.
4) Luedde M, Katus HA, Frey N. Novel molecular targets in the treatment of cardiac hypertrophy. Recent Pat Cardiovasc Drug Discov. 2006; 1 (1):1-20.
5) McMullen. J R, Jennings. J L. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clinical and Experimental Pharmacology and Physiology. 2007; 34:255-62.
6) Srivastava D, Cserjesi P, Olson EN. A subclass of bHLH proteins required for cardiac morphogenesis. Science. 1995; 270 (5244):1995-9.
7) Dai YS, Cserjesi P. The basic helix-loop-helix factor, HAND2, functions as a transcriptional activator by binding to E-boxes as a heterodimer. J Biol Chem. 2002; 277 (15):12604-12.
8) Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 2000; 20 (2):429-40.
9) Firulli BA, Hadzic DB, McDaid JR, Firulli AB. The basic helix-loop-helix transcription factors dHAND and eHAND exhibit dimerization characteristics that suggest complex regulation of function. J Biol Chem. 2000; 275 (43):33567-73.
10) Togi K, Yoshida Y, Matsumae H, Nakashima Y, Kita T, Tanaka M. Essential role of Hand2 in interventricular septum formation and trabeculation during cardiac development. Biochem Biophys Res Commun. 2006; 343 (1):144-51.
11) Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res. 2003; 92 (10):1079-88.
12) Srivastava D. HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med. 1999; 9 (1-2):11-8.
13) Zhao Y, Srivastava D, Samal E. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005; 436 (7048):214-20.
14) McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development. 2005; 132 (1):   189-201.
15) Thattaliyath BD, Livi CB, Steinhelper ME, Toney GM, Firulli AB. HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy. Biochem Biophys Res Commun. 2002; 297 (4):870-5.
16) Natarajan A, Yamagishi H, Ahmad F, Li D, Roberts R, Matsuoka R, et al. Human eHAND, but not dHAND, is down-regulated in cardiomyopathies. J Mol Cell Cardiol. 2001; 33 (9):1607-14.
17) Jin H, Yang R, Li W, Lu H, Ryan AM, Ogasawara AK, et al. Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol Heart Circ Physiol. 2000; 279 (6):H2994-3002.
18) Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci. 2010; 86 (1-2):39-44.
19) Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct Method. Methods. 2001; 25 (4):402-8.
20) Yuan JS, Reed A, Chen F, Stewart CN, Jr. Statistical analysis of real-time PCR data. BMC Bioinformatics. 2006; 7:85-97.
21) Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005; 39 (1):75-85.
22) Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008; 3 (6):1101-8.
23) Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29 (9):45.
24) Yamagishi H, Olson EN, Srivastava D. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest. 2000; 105 (3):       261-70.
25) Fathi M, Gharakanlou R, Abroun S, Mokhtari-Dizaji M, Rezaei R. Considerations in the evaluation of cardiac changes following endurance training in male Wistar rats. yafteh. 2013; 15:112-23 (in Persian).
26) Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975; 82 (4):521-4.
27) Venckunas T, Lionikas A, Marcinkeviciene JE, Raugaliene R, Alekrinskis A, Stasiulis A. Echocardiographic parameters in athletes of different sports. Journal of sports science & medicine. 2008; 7 (1):151-6.
28) Mihl C, Dassen WR, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008; 16 (4):129-33.
29) Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res. 2001; 51 (3):372-90.