نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزش، دانشکده علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران

2 گروه فیزیولوژی ورزشی،دانشکده علوم ورزشی، ددانشگاه اصفهان، اصفهان، ایران

3 استادیار علوم تشریحی، گروه علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی لرستان، خرم‌آباد، ایران.

4 عضو هیات علمی دانشگاه علوم پزشکی لرستان

چکیده

اهداف:
سالمندی با افزایش التهاب سیستمیک و میزان فیبروز در بافت قلب همراه است. فعالیت ورزشی منظم و گیاه زالزالک می تواند در تعدیل التهاب و فیبروز موثر باشند. هدف این پژوهش تاثیر تمرین تناوبی با شدت بالا (HIIT) در ترکیب با مصرف عصاره زالزالک بر میزان فیبروز قلبی و نشانگرهای التهابی در بافت قلب رت‌های سالمند بود.

مواد و روش‌ها:
در یک مطالعه تجربی تعداد 36 سر رت نر سالمند21 ± 2 ماه تهیه شد و به طور تصادقی به چهار گروه مساوی تقسیم شدند. مداخله تمرینی شامل پنج جلسه تمرین HIIT در هفته و دادن عصاره زالزالک به میزان 100 میلی‌گرم/کیلوگرم به روش گاواژ به رت‌ها به مدت هشت هفته بود. نمونه‌گیری پس از اتمام دوره برای سنجش TNF، IL1 و میزان فیبروز انجام گرفت. داده‌ها با استفاده از تحلیل واریانس، آزمون بونفرونی و نرم افزار Image J مورد تجزیه و تحلیل قرار گرفت.
یافته‌ها:
یافته‌ها نشان داد که کاهش معنی‌داری در غلظت های بافتی IL1، TNF و میزان فیبروز میان گروه‌های تحقیق وجود داشت. هر دو مداخله‌ی تحقیق منجر به کاهش معنی‌داری در غلظت بافتی TNFو IL1 در مقایسه با گروه کنترل گردید. همچنین، بیشترین کاهش در میزان فیبرزو در گروه تمرین‌+عصاره مشاهده شد. با این حال، نتایج آزمون بونفرونی تفاوت معنی‌داری بین گروه ترکیب تمرین+عصاره در مقایسه با با گروه تمرین و گروه عصاره در کاهش میزان فیبروز نشان داد
نتیجه‌گیری:
به نظر می رسد ترکیب تمرین HIIT و مصرف زالزالک تأثیر بیشتری بر کاهش التهاب و میزان فیبروز در افراد سالمند دارد.

کلیدواژه‌ها

موضوعات

  1. Kim Y, Triolo M, Hood DA. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxidative medicine and cellular longevity. 2017;2017.
  2. Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Age-related changes in skeletal muscle mitochondria: the role of exercise. Integrative medicine research. 2016;5(3):182-6.
  3. Medzikovic L, Aryan L, Eghbali M. Connecting sex differences, estrogen signaling, and microRNAs in cardiac fibrosis. Journal of Molecular Medicine. 2019;97:1385-98.
  4. Cancemi P, Aiello A, Accardi G, Caldarella R, Candore G, Caruso C, et al. The role of matrix metalloproteinases (MMP-2 and MMP-9) in ageing and longevity: focus on sicilian long-living individuals (LLIs). Mediators of Inflammation. 2020;2020.
  5. Horn MA, Trafford AW. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. Journal of molecular and cellular cardiology. 2016;93:175-85.
  6. Shih Y-C, Chen C-L, Zhang Y, Mellor RL, Kanter EM, Fang Y, et al. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circulation research. 2018;122(8):1052-68.
  7. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circulation research. 2016;118(6):1021-40.
  8. Park S, Ranjbarvaziri S, Zhao P, Ardehali R. Cardiac fibrosis is associated with decreased circulating levels of full-length CILP in heart failure. Basic to Translational Science. 2020;5(5):432-43.
  9. Mack M. Inflammation and fibrosis. Matrix Biology. 2018;68:106-21.
  10. Kurose H. Cardiac fibrosis and fibroblasts. Cells. 2021;10(7):1716.
  11. Kurose H, Mangmool S. Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Archives of pharmacal research. 2016;39:1100-13.
  12. Nguyen MN, Kiriazis H, Gao XM, Du XJ. Cardiac fibrosis and arrhythmogenesis. Comprehensive Physiology. 2011;7(3):1009-49.
  13. Pérez LM, Pareja‐Galeano H, Sanchis‐Gomar F, Emanuele E, Lucia A, Gálvez BG. ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. The Journal of physiology. 2016;594(12):3187-207.
  14. Fiordelisi A, Iaccarino G, Morisco C, Coscioni E, Sorriento D. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases. International Journal of Molecular Sciences. 2019;20(7):1599.
  15. García-García VA, Alameda JP, Page A, Casanova ML. Role of NF-κB in ageing and age-related diseases: Lessons from genetically modified mouse models. Cells. 2021;10(8):1906.
  16. Kanigur Sultuybek G, Soydas T, Yenmis G. NF‐κB as the mediator of metformin's effect on ageing and ageing‐related diseases. Clinical and Experimental Pharmacology and Physiology. 2019;46(5):413-22.
  17. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF‐κB signaling in inflammation and cancer. MedComm. 2021;2(4):618-53.
  18. Jiang W, Xiong Y, Li X, Yang Y. Cardiac fibrosis: cellular effectors, molecular pathways, and exosomal roles. Frontiers in Cardiovascular Medicine. 2021;8:715258.
  19. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circulation research. 2019;124(5):799-815.
  20. Kyselovič J, Leddy JJ. Cardiac fibrosis: the beneficial effects of exercise in cardiac fibrosis. Exercise for Cardiovascular Disease Prevention and Treatment: From Molecular to Clinical, Part 1. 2017:257-68.
  21. Shortreed SM, Peeters A, Forbes AB. Estimating the effect of long-term physical activity on cardiovascular disease and mortality: evidence from the Framingham Heart Study. Heart. 2013;99(9):649-54.
  22. Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59:56-66.
  23. Montero D, Diaz-Cañestro C, Lundby C. Endurance Training and V˙ O2max: Role of Maximal Cardiac Output and Oxygen Extraction. Medicine and science in sports and exercise. 2015;47(10):2024-33.
  24. Palacios Le Blé G, Pedrero Chamizo R, Palacios Gil Antuñano N, Maroto Sanchez B, Aznar S, Gonzalez Gross MM. Biomarkers of physical activity and exercise. Nutricion hospitalaria. 2015;31(Supl. 3):237-44.
  25. Li Y, Cai M, Cao L, Qin X, Zheng T, Xu X, et al. Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice. PLoS One. 2014;9(12):e114205.
  26. Garza MA, Wason EA, Zhang JQ. Cardiac remodeling and physical training post myocardial infarction. World journal of cardiology. 2015;7(2):52.
  27. Stöggl TL, Björklund G. High intensity interval training leads to greater improvements in acute heart rate recovery and anaerobic power as high volume low intensity training. Frontiers in physiology. 2017;8:562.
  28. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British journal of sports medicine. 2014;48(16):1227-34.
  29. Hsu C-C, Wang J-S, Shyu Y-C, Fu T-C, Juan Y-H, Yuan S-S, et al. Hypermethylation of ACADVL is involved in the high-intensity interval training-associated reduction of cardiac fibrosis in heart failure patients. Journal of Translational 2023;21(1):1-15.
  30. Hill J, Mills C, Li Q, Smith JS. Prevalence of traditional, complementary, and alternative medicine use by cancer patients in low income and lower-middle income countries. Global public health. 2019;14(3):418-30.
  31. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology. 2014;4:177.
  32. Paknia S, Sharif MAS, Heidarianpour A. The Effect of Resistance Training Along with Hawthorn Supplementation on Some Indices of Oxidative Stress in Alzheimer's Male Rats. 2022.
  33. Papaconstantinou J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells. 2019;8(11):1383.
  34. Behrooznia F, Eidy A, Ghaneialvar H. Herbal plants for heart diseases. Plant Biotechnol Persa. 2019;1(1):39-41.
  35. Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food applications and potential health benefits of hawthorn. Foods. 2022;11(18):2861.
  36. Hamza AA, Lashin FM, Gamel M, Hassanin SO, Abdalla Y, Amin A. Hawthorn herbal preparation from Crataegus oxyacantha attenuates in vivo carbon tetrachloride-induced hepatic fibrosis via modulating oxidative stress and inflammation. Antioxidants. 2020;9(12):1173.
  37. Wu M, Liu L, Xing Y, Yang S, Li H, Cao Y. Roles and mechanisms of hawthorn and its extracts on atherosclerosis: a review. Frontiers in pharmacology. 2020;11:118.
  38. Kim E, Jang E, Lee J-H. Potential roles and key mechanisms of hawthorn extract against various liver diseases. Nutrients. 2022;14(4):867.
  39. سعید شب, حسین پد, نازنین م, الهام نر, زهرا م, مصباح ش, et al. بررسی سطح سرمی 25 هیدروکسی ویتامین D در بیماران MS و مقایسه آن با گروه شاهد.
  40. Darband SG, Sadighparvar S, Yousefi B, Kaviani M, Mobaraki K, Majidinia M. Combination of exercise training and L-arginine reverses aging process through suppression of oxidative stress, inflammation, and apoptosis in the rat heart. Pflügers Archiv-European Journal of Physiology. 2020;472(2):169-78.
  41. Sun L, Li F-H, Li T, Min Z, Yang L-D, Gao H-E, et al. Effects of high-intensity interval training on adipose tissue lipolysis, inflammation, and metabolomics in aged rats. Pflügers Archiv-European Journal of Physiology. 2020;472:245-58.
  42. Constans A, Pin-Barre C, Molinari F, Temprado J-J, Brioche T, Pellegrino C, et al. High-intensity interval training is superior to moderate intensity training on aerobic capacity in rats: Impact on hippocampal plasticity markers. Behavioural Brain Research. 2021;398:112977.
  43. Ranjbar K, Zarrinkalam E, Salehi I, Komaki A, Fayazi B. Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion–induced oxidative stress in diabetic rats. Biomedicine & Pharmacotherapy. 2018;100:455-60.
  44. Schleicher E, Wieland O. Evaluation of the Bradford method for protein determination in body fluids. Journal of clinical chemistry and clinical biochemistry Zeitschrift fur klinische Chemie und klinische Biochemie. 1978;16(9):533-4.
  45. Liao P-H, Hsieh DJ-Y, Kuo C-H, Day C-H, Shen C-Y, Lai C-H, et al. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. Oncotarget. 2015;6(34):35383.
  46. Khademi Y, Azarbayjani M, Hosseini H. Simultaneous effect of high-intensity interval training (HIIT) and consumption of flaxseed on serum levels of TNF-α and IL1β in rats. Internal Medicine Today. 2017;23(4):257-63.
  47. Hadiono M, Kushartanti BW, editors. High intensity interval training (HIIT) and moderate intensity training (MIT) against TNF-α and IL-6 levels in rats. 2nd International Conference on Sports Sciences and Health 2018 (2nd ICSSH 2018); 2019: Atlantis Press.
  48. Khalafi M, Symonds ME. The impact of high‐intensity interval training on inflammatory markers in metabolic disorders: A meta‐analysis. Scandinavian journal of medicine & science in sports. 2020;30(11):2020-36.
  49. Hooshmand Moghadam B, Golestani F, Bagheri R, Cheraghloo N, Eskandari M, Wong A, et al. The effects of high-intensity interval training vs. moderate-intensity continuous training on inflammatory markers, body composition, and physical fitness in overweight/obese survivors of breast cancer: A randomized controlled clinical trial. Cancers. 2021;13(17):
  50. Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram M. The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers. Hormone molecular biology and clinical investigation. 2015;21(3):165-73.
  51. Shahouzehi B, Nasri H, Aminizadeh S, Masoumi-Ardakani Y. The Effect of High-intensity Interval Training and L-carnitine on the Expression of Some Pro-inflammatory Genes in the Liver and Cardiac Tissues of Rats. Journal of Kerman University of Medical Sciences. 2021;28(1):56-68.
  52. Lesniewski LA, Durrant JR, Connell ML, Henson GD, Black AD, Donato AJ, et al. Aerobic exercise reverses arterial inflammation with aging in mice. American Journal of Physiology-Heart and Circulatory Physiology. 2011;301(3):H1025-H32.
  53. Jakus T, Jurdana M, Žiberna L, Pražnikar ZJ. Acute moderate-intensity exercise increases total antioxidant capacity and anti-inflammatory responses in competitive cyclists: The role of adiponectin. European Journal of Inflammation. 2021;19:2058739221998890.
  54. Saghebjoo M, Sadeghi-Tabas S, Saffari I, Ghane A, Dimauro I. Sex Differences in antiaging response to short-and long-term high-intensity interval exercise in rat cardiac muscle: Telomerase activity, total antioxidant/oxidant status. Chinese Journal of Physiology. 2019;62(6):261.
  55. Liu F, Zhang X, Ji Y. Total flavonoid extract from hawthorn (Crataegus pinnatifida) improves inflammatory cytokines-evoked epithelial barrier deficit. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2020;26:e920170-1.
  56. Li C, Wang M-H. Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells. Nutrition research and practice. 2011;5(2):101-6.
  57. Kim S-J, Um J-Y, Hong S-H, Lee J-Y. Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. The American journal of Chinese medicine. 2011;39(01):171-81.
  58. Peng Y, Lou L-L, Liu S-F, Zhou L, Huang X-X, Song S-J. Antioxidant and anti-inflammatory neolignans from the seeds of hawthorn. Bioorganic & medicinal chemistry letters. 2016;26(22):5501-6.
  59. Liu S, Yu J, Fu M, Wang X, Chang X. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats. Food Research International. 2021;142:110239.
  60. Yazdani F, Shahidi F, Karimi P. The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. Journal of physiology and biochemistry. 2020;76:291-9.
  61. Holloway TM, Bloemberg D, da Silva ML, Simpson JA, Quadrilatero J, Spriet LL. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats. PloS one. 2015;10(3):e0121138.
  62. Wang K, Deng Y, Xiao H. Exercise and Cardiac Fibrosis. Current Opinion in Physiology. 2023:100630.
  63. Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 2010;122(12):1221-38.
  64. Rathinavel A, Sankar J, Mohammed Sadullah SS, Niranjali Devaraj S. Oligomeric proanthocyanidins protect myocardium by mitigating left ventricular remodeling in isoproterenol‐induced postmyocardial infarction. Fundamental & Clinical Pharmacology. 2018;32(1):51-9.
  65. Hwang HS, Bleske BE, Ghannam MM, Converso K, Russell MW, Hunter JC, et al. Effects of hawthorn on cardiac remodeling and left ventricular dysfunction after 1 month of pressure overload-induced cardiac hypertrophy in rats. Cardiovascular drugs and therapy. 2008;22:19-28.
  66. صادقیان, زاده ک, کندی م, یحیی, شانجانی م, صداقتی. تأثیر تمرین هوازی به همراه مصرف کورکومین بر بیان ‌ژن شاخص‌های آپوپتوزیبافت کبد موش‌های سرطانی القایی پستان در فاز درمان با دوکسوروبیسین: یک مطالعه تجربی. مجله علمی دانشگاه علوم پزشکی رفسنجان. 2022;21(4):433-48.
  67. Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. Journal of Clinical Medicine. 2021;10(19):4430.