نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزشی/ واحد اسلامشهر، دانشگاه آزاد اسلامی، اسلامشهر، ایران

2 گروه فیزیولوژی ورزشی/ واحد اسلامشهر، دانشگاه آزاد اسلامی/ایران

3 گروه علوم ورزشی/ دانشگاه زنجان، زنجان، ایران

4 دانش آموخته دانشگاه خوارزمی، تهران، ایران

5 گروه فیزیولوژی ورزشی/ واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

هدف از این مطالعه بررسی اثر محفاظتی کاسنی در برابر آسیب های ناشی از تستوسترون انانتات بر سطوح بیان ژن سایتوکین‌های فاکتور نکروز تومور-آلفا و اینترلوکین-6 در بافت کلیه موش‌های صحرایی ماده در طول هشت هفته تمرین مقاومتی است.
مواد و روش‌ها: در این پژوهش تجربی، 22 سر موش‌ صحرایی ماده نژاد ویستار به‌طور تصادفی به 3 گروه: ۱) گروه تمرین + دارونما(شم) ، 2) گروه تمرین + تستوسترون انانتات، 3) گروه تمرین + تستوسترون انانتات + کاسنی تقسیم و سه گروه به مدت هشت هفته تمرین مقاومتی انجام دادند. موش های گروه 2 و 3، تستوسترون انانتات به میزان 20 میلی گرم بر کیلوگرم را به صورت تزریق عضلانی سه روز در هفته دریافت نمودند. همچنین گروه 3، عصاره کاسنی به میزان ۶ گرم به ازای هر کیلوگرم از وزن بدن به شکل گاواژ سه بار در هفته دریافت کردند. بیان ژن ها در بافت کلیه به روش Real-Time PCR اندازه گیری شد. داده ها با استفاده از نرم افزار SPSS 21 و با آزمون تحلیل واریانس یک راهه و آزمون تعقیبی بونفرونی مورد تجزیه و تحلیل قرار گرفت (p≤0/05).
یافته‌ها: بیان ژن های TNF-α و IL-6 در گروه تمرین + تستوسترون انانتات به میزان معناداری بالاتر از گروه تمرین + دارونما بود (P<0/0001). گروه تمرین + تستوسترون انانتات + کاسنی موجب کاهش معنادار بیان ژن های TNF-α و IL-6 نسبت به گروه تمرین + تستوسترون شد(P<0/0001).
نتیجه‌گیری: به نظر می‌رسد مصرف کاسنی در کاهش عوارض ناشی از مصرف تستوسترون انانتات در ب موش‌ها نقش مؤثری داشته باشد.

کلیدواژه‌ها

موضوعات

  1. Bond P, Smit DL, de Ronde W. Anabolic-androgenic steroids: How do they work and what are the risks? Front Endocrinol (Lausanne). 2022 Dec 19;13:1059473. doi: 10.3389/fendo.2022.1059473. PMID: 36644692; PMCID: PMC9837614.
  2. Chen J, Yu J, Yuan R, Li N, Li C, Zhang X. mTOR inhibitor improves testosterone-induced myocardial hypertrophy in hypertensive rats. The Journal of Endocrinology. 2022;252(3):179. https://pubmed.ncbi.nlm.nih.gov/34874016/
  3. Lemiński A, Kubis M, Kaczmarek K, Gołąb A, Kazimierczak A, Kotfis K, et al. When bodybuilding goes wrong—bilateral renal artery thrombosis in a long-term misuser of anabolic steroids treated with AngioJet rheolytic thrombectomy. International Journal of Environmental Research and Public Health. 2022;19(4):2122. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872588/
  4. Abd El Nasser AM. Local steroid injection for management of different types of acute idiopathic orbital inflammation: an 8-year study. Ophthalmic Plastic & Reconstructive Surgery. 2013;29(4):286-9. https://pubmed.ncbi.nlm.nih.gov/23839634/
  5. Davani-Davari D, Karimzadeh I, Khalili H. The potential effects of anabolic-androgenic steroids and growth hormone as commonly used sport supplements on the kidney: a systematic review. BMC nephrology. 2019;20:1-12. https://pubmed.ncbi.nlm.nih.gov/31151420/
  6. MEDICA EM. Evaluation of anabolic steroid induced renal damage with sonography in bodybuilders. The Journal of Sports Medicine and Physical Fitness. 2017. https://pubmed.ncbi.nlm.nih.gov/29148625/
  7. Tsuji S, Sugiura M, Tsutsumi S, Yamada H. Sex differences in the excretion levels of traditional and novel urinary biomarkers of nephrotoxicity in rats. J Toxicol Sci. 2017;42:615–27
  8. Zhao JV, Schooling CM. The role of testosterone in chronic kidney disease and kidney function in men and women: a bi-directional Mendelian randomization study in the UK Biobank. BMC medicine. 2020;18(1):1-10. https://pubmed.ncbi.nlm.nih.gov/32493397/
  9. Misseri R, Meldrum DR, Dagher P, Hile K, Rink RC, Meldrum KK. Unilateral ureteral obstruction induces renal tubular cell production of tumor necrosis factor-α independent of inflammatory cell infiltration. The Journal of urology. 2004;172(4):1595-9. https://pubmed.ncbi.nlm.nih.gov/15507546/
  10. Metcalfe PD, Leslie JA, Campbell MT, Meldrum DR, Hile KL, Meldrum KK. Testosterone exacerbates obstructive renal injury by stimulating TNF-α production and increasing proapoptotic and profibrotic signaling. American Journal of Physiology-Endocrinology and Metabolism. 2008;294(2):E435-E43. https://journals.physiology.org/doi/pdf/10.1152/ajpendo.00704.2006
  11. Sadowska-Krępa E, Kłapcińska B, Nowara A, Jagsz S, Szołtysek-Bołdys I, Chalimoniuk M, et al. High-dose testosterone supplementation disturbs liver pro-oxidant/antioxidant balance and function in adolescent male Wistar rats undergoing moderate-intensity endurance training. PeerJ. 2020;8:e10228. https://pubmed.ncbi.nlm.nih.gov/33240609/
  12. Sagoe D, Molde H, Andreassen CS, Torsheim T, Pallesen S. The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis. Annals of epidemiology. 2014;24(5):383-98. https://pubmed.ncbi.nlm.nih.gov/24582699/
  13. Rouhi-Boroujeni H, Heidarian E, Rouhi-Boroujeni H, Deris F, Rafieian-Kopaei M. Medicinal plants with multiple effects on cardiovascular diseases: A systematic review. Current pharmaceutical design. 2017;23(7):999-1015. https://pubmed.ncbi.nlm.nih.gov/27774898/
  14. Singh R, Chahal KK. Cichorium intybus L: A review on phytochemistry and pharmacology. International Journal of Chemical Studies. 2018;6(3):1272-80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913551/
  15. Xiao H, Xie G, Wang J, Hou X, Wang X, Wu W, et al. Chicoric acid prevents obesity by attenuating hepatic steatosis, inflammation and oxidative stress in high-fat diet-fed mice. Food research international. 2013;54(1):345-53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657699/
  16. Jin Y-N, Lin Z-J, Zhang B, Bai Y-F. Effects of chicory on serum uric acid, renal function, and GLUT9 expression in hyperuricaemic rats with renal injury and in vitro verification with cells. Evidence-Based Complementary and Alternative Medicine. 2018;2018. https://pubmed.ncbi.nlm.nih.gov/30622589/
  17. Cavin C, Delannoy M, Malnoe A, Debefve E, Touché A, Courtois D, et al. Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochemical and Biophysical Research Communications. 2005;327(3):742-9. https://pubmed.ncbi.nlm.nih.gov/15649409/
  18. Gorzi A, Rajabi H, Qarakhanlu R, Dehkhoda M, Hedayati M. The effect of eight weeks of resistance training on total acetylcholinesterase activity and type A12 in the horseshoe muscles of rats. Research in Sports Medicine and Technology.1396(13):7. http://feyz.kaums.ac.ir/browse.php?a_id=1327&sid=1&slc_lang=en
  19. El-hanbuli HM, Abo-sief AF, Mostafa T. Protective effect of silymarin on the testes of rats treated with anabolic androgenic steroid: A biochemical, histological, histochemical and immunohistochemical study. Histol Histopathol. 2017;4(10). https://www.hoajonline.com/histology/2055-091X/4/10
  20. Li G-Y, Zheng Y-X, Sun F-Z, Huang J, Lou M-M, Gu J-K, et al. In silico analysis and experimental validation of active compounds from Cichorium intybus L. ameliorating liver injury. International Journal of Molecular Sciences. 2015;16(9):22190-204. https://pubmed.ncbi.nlm.nih.gov/26389883/
  21. Mahjabeen S, Hatipoglu MK, Benbrook DM, Kosanke SD, Garcia-Contreras D, Garcia-Contreras L. Influence of the estrus cycle of the mouse on the disposition of SHetA2 after vaginal administration. Eur J Pharm Biopharm. 2018 Sep;130:272-280. doi: 10.1016/j.ejpb.2018.07.004. Epub 2018 Jul 4. PMID: 30064701; PMCID: PMC6092953.
  22. Patil CN, Wallace K, LaMarca BD, Moulana M, Lopez-Ruiz A, Soljancic A, et al. Low-dose testosterone protects against renal ischemia-reperfusion injury by increasing renal IL-10-to-TNF-α ratio and attenuating T-cell infiltration. American Journal of Physiology-Renal Physiology. 2016;311(2):F395-F403. https://pubmed.ncbi.nlm.nih.gov/27252490/
  23. Bianchi VE. The Anti-Inflammatory Effects of Testosterone. J Endocr Soc. 2018 Oct 22;3(1):91-107. doi: 10.1210/js.2018-00186. PMID: 30582096; PMCID: PMC6299269.
  24. Banaei S, Rezagholizadeh L. The role of hormones in renal disease and ischemia-reperfusion injury. Iran J Basic Med Sci. 2019 May;22(5):469-476. doi: 10.22038/ijbms.2019.34037.8095. PMID: 31217925; PMCID: PMC6556504.
  25. Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol. 2014 Jun;26(3):253-66. doi: 10.1016/j.smim.2014.05.004. Epub 2014 Jun 21. PMID: 24958609; PMCID: PMC4156877.
  26. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023–. doi: 10.1038/sigtrans.2017.23. Epub 2017 Jul 14. PMID: 29158945; PMCID: PMC5661633.
  27. White S, Lin L, Hu K. NF-κB and tPA Signaling in Kidney and Other Diseases. Cells. 2020 May 29;9(6):1348. doi: 10.3390/cells9061348. PMID: 32485860; PMCID: PMC7348801.
  28. Mohamad NV, Wong SK, Wan Hasan WN, Jolly JJ, Nur-Farhana MF, Ima-Nirwana S, et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male. 2019;22(2):129–40. [PubMed ID: 29925283]. https://doi.org/10.1080/13685538.2018.1482487.
  29. Kaur H, Werstuck GH. The Effect of Testosterone on Cardiovascular Disease and Cardiovascular Risk Factors in Men: A Review of Clinical and Preclinical Data. CJC Open. 2021 May 17;3(10):1238-1248. doi: 10.1016/j.cjco.2021.05.007. PMID: 34888506; PMCID: PMC8636244.
  30. Khaw KT, Dowsett M, Folkerd E, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) prospective population study. Circulation. 2007;116:2694–2701.

 

  1. Rizvi W, Fayazuddin M, Shariq S, Singh O, Moin S, Akhtar K, Kumar A. Anti-inflammatory activity of roots of Cichorium intybus due to its inhibitory effect on various cytokines and antioxidant activity. Anc Sci Life. 2014 Jul-Sep;34(1):44-9. doi: 10.4103/0257-7941.150780. PMID: 25737610; PMCID: PMC4342649.
  2. Sharma M, Afaque A, Dwivedi S, Jairajpuri ZS, Shamsi Y, Khan MF, et al. attenuates streptozotocin induced diabetic cardiomyopathy via inhibition of oxidative stress and inflammatory response in rats. Interdisciplinary toxicology. 2019;12(3):111-9. https://pubmed.ncbi.nlm.nih.gov/32210699/
  3. Ghaffari A, Rafraf M, Navekar R, Sepehri B, Asghari-Jafarabadi M, Ghavami S-M. Turmeric and chicory seed have beneficial effects on obesity markers and lipid profile in non-alcoholic fatty liver disease (NAFLD). International Journal for Vitamin and Nutrition Research. 2019. https://pubmed.ncbi.nlm.nih.gov/31017556/
  4. Rezagholizadeh, L., Pourfarjam, Y., Nowrouzi, A. et al. Effect of Cichorium intybus L. on the expression of hepatic NF-κB and IKKβ and serum TNF-α in STZ− and STZ+ niacinamide-induced diabetes in rats. Diabetol Metab Syndr 8, 11 (2016). https://doi.org/10.1186/s13098-016-0128-6
  5. Abbas ZK, Saggu S, Sakeran MI, Zidan N, Rehman H, Ansari AA. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi journal of biological sciences. 2015;22(3):322-6. https://pubmed.ncbi.nlm.nih.gov/25972754/
  6. Epure A, Pârvu AE, Vlase L, Benedec D, Hanganu D, Gheldiu A-M, et al. Phytochemical profile, antioxidant, cardioprotective and nephroprotective activity of romanian chicory extract. Plants. 2020;10(1):64. https://pubmed.ncbi.nlm.nih.gov/33396775/
  7. Kawano M, Saika K, Takagi R, Matsui M, Matsushita S. Tannic acid acts as an agonist of the dopamine D2L receptor, regulates immune responses, and ameliorates experimentally induced colitis in mice. Brain, Behavior, & Immunity-Health. 2020;5:100071. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474654/