اثر تمرینات ورزشی بر بیان برخی پروتئین‌های پردازش APP مغز در موش‌های مدل بیماری آلزایمر: مطالعۀ فراتحلیل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 دانشیار، گروه علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

3 دانشیار، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

چکیده
هدف این مطالعه، تعیین اندازه اثر تمرینات ورزشی بر بیان پروتئین‌های ADAM10 (پیامد اصلی) و BACE1، sAPPα، sAPPβ و (پیامدهای فرعی) در مغز موش‌های مدل AD و انجام تحلیل‌های طبقه‌ای و فرارگرسیون بر حسب متغیرهای تعدیل‌کننده بود. مداخلات بررسی‌کننده تأثیر تمرین ورزشی دارای مدت زمان بیش از سه‌هفته بر موش‌های مدل آلزایمر (AD) منتشرشده در مجلات پژوهشی فارسی و انگلیسی تا جولای 2024، از سایت‌های Google، SID و Magiran و Pubmed جستجو و تحلیل شدند. مدل اثرات تصادفی برای تعیین اندازه‌ اثر (SMD با تناوب اطمینان %95) مداخلات (n=14) سنجش‌کننده‌ بیان پروتئین ADAM10، BACE1، sAPPα، sAPPβ و مغزی با  نرم‌افزار CMA2 استفاده شد. I2 بیشتر از 50 درصد، مبنای وجود هتروژنیتی زیاد قرار گرفت و سوگیری انتشار با تست اِگِر بررسی شد. همبستگی بین اندازه اثر تمرینات بر بیان ADAM10 و BACE1 مغز، با ضریب پیرسون و  رگرسیون بین دو اندازه اثر فوق با سن موش‌ها و طول مدت تمرینات با فرارگرسیون مدل اثر لحظه‌ای بررسی شد. همچنین درمورد بیان ADAM10 و BACE1 سنجش‌شده در بین سه ناحیه مختلف مغز، تحلیل طبقه‌ای انجام شد. یافته‌ها نشان داد که در تمام پیامدها مقدار هتروژنیتی در بین نتایج تحقیقات، زیاد بود. اندازه اثر کل مداخلات مورد شمول (n=14) درمورد بیان پروتئین ADAM10 مغز پس از تحلیل سوگیری انتشار (SMD=0.73, CI95%: -0.43 to 1.91) معنادار نشد (با توجه به تناوب اطمینان)، اما درمورد پیامدهای فرعی، اندازه اثر حاصل‌شده نهایی درمورد sAPPβ (SMD= -2.59, CI95%: -3.80 to -1.39) و (SMD= -4.03, -2.92 to -5.13) مغز معنا‌دار شد. در تحلیل‌های طبقه‌ای (n=7)، بیان ADAM10 (SMD= 2.48, p=0.001) و BACE1 (SMD= -2.03, p=0.001) فقط در هیپوکامپ معنا‌دار بود. نتیجه‌گیری می‌شود، هتروژنیتی زیاد، در کل یافته‌ها بیان می‌کند که هنوز باید تحقیقات بیشتری در این زمینه انجام شود. افزایش بیان ADAM10 و کاهش بیان BACE1 در هیپوکامپ همراه با کاهش sAPPβ و در کل بافت مغز موش‌های مدل AD در اثر تمرینات ورزشی، نویدبخش کاهش بار آمیلوئید مغزی و به‌ویژه در مراحل اولیه AD است؛ اگرچه این یافته‌ها هنوز باید در جمعیت انسانی تأیید شود.

کلیدواژه‌ها

موضوعات


  1. Liu-Seifert H, Siemers E, Sundell K, Price K, Han B, Selzler K, et al. Cognitive and functional decline and their relationship in patients with mild Alzheimer's dementia. Journal of Alzheimer's Disease. 2015;43(3):949-55.
  2. Zahodne LB, Manly JJ, MacKay-Brandt A, Stern Y. Cognitive declines precede and predict functional declines in aging and Alzheimer’s disease. PloS one. 2013;8(9): e73645.
  3. Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010;362(4):329-44.
  4. Parbo P, Ismail R, Sommerauer M, Stokholm MG, Hansen AK, Hansen KV, et al. Does inflammation precede tau aggregation in early Alzheimer's disease? A PET study. 2018; 117:211-6.
  5. Khan SS, Bloom GS. Tau: the center of a signaling nexus in Alzheimer's disease. Frontiers in Neuroscience. 2016; 10:31.
  6. Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harbor Perspectives in Medicine. 2012;2(5): a006270.
  7. Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. Journal of Biological Chemistry. 2008;283(44):29615-9.
  8. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-6.
  9. Endres K, Deller T. Regulation of alpha-secretase ADAM10 in vitro and in vivo: genetic, epigenetic, and protein-based mechanisms. Frontiers in Molecular Neuroscience. 2017; 10:56.
  10. Portelius E, Price E, Brinkmalm G, Stiteler M, Olsson M, Persson R, et al. A novel pathway for amyloid precursor protein processing. Neurobiology of Aging. 2011;32(6):1090-8.
  11. Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: multiple pathways to promote non-amyloidogenic AβPP processing. Aging and Health Research. 2022:100093.
  12. Goldstein MR, Cheslock M. On the prevention and treatment of Alzheimer’s disease: Control the promoters and look beyond the brain. Medical Hypotheses. 2021; 154:110645.
  13. Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, et al. Targeting necroptosis as a promising therapy for Alzheimer’s disease. ACS Chem Neurosci. 2022:13(12):1697-713
  14. Khezri MR, Mohebalizadeh M, Ghasemnejad-Berenji M. Therapeutic potential of ADAM10 modulation in Alzheimer’s disease: a review of the current evidence. Cell Communication and Signaling. 2023;21(1):60.
  15. Marko DM, MacPherson REJAJoP-R, Integrative, Physiology C. APP processing: a biochemical competition influenced by exercise-induced signaling mediators? Am J Physiol Regul Integr Comp Physiol. 2022;323(2):R169-R80.
  16. Tan Z-X, Dong F, Wu L-Y, Feng Y-S, Zhang F. The beneficial role of exercise on treating Alzheimer’s disease by inhibiting β-Amyloid peptide. Molecular Neurobiology. 2021;58(11):5890-906.
  17. Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: multiple pathways to promote non-amyloidogenic AβPP processing. Aging and Health Research. 2022;2(3):100093.
  18. Xu L, Liu R, Qin Y, Wang TJTN. Brain metabolism in Alzheimer’s disease: biological mechanisms of exercise. Transl Neurodegener. 2023;12(1):33.
  19. Baranowski BJ, Mohammad A, Finch MS, Brown A, Dhaliwal R, Marko DM, et al. Exercise training and BDNF injections alter amyloid precursor protein (APP) processing enzymes and improve cognition. J Appl Physiol (1985). 2023;135(1):121-35.
  20. Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer's disease: A sound mind in a sound body. EXCLI Journal. 2017; 16:959-72.
  21. Marko D. APP processing: a biochemical competition influenced by exercise-induced signalling mediators. Am J Physiol Regul Integr Comp Physiol. 323(2): R169-R180.
  22. Zhang X-L, Zhao N, Xu B, Chen X-H, Li T-JJN. Treadmill exercise inhibits amyloid-β generation in the hippocampus of APP/PS1 transgenic mice by reducing cholesterol-mediated lipid raft formation. Neuroreport. 2019;30(7):498-503.
  23. Jaberi S, Fahnestock M. Mechanisms of the beneficial effects of exercise on brain-derived neurotrophic factor expression in Alzheimer’s disease. Biomolecules. 2023;13(11):1577.
  24. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207-16.
  25. Vardarajan BN, Faber KM, Bird TD, Bennett DA, Rosenberg R, Boeve BF, et al. Age-specific incidence rates for dementia and Alzheimer disease in NIA-LOAD/NCRAD and EFIGA families: National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA). JAMA neurology. 2014;71(3):315-23.
  26. Davidson TL, Stevenson RJ. Vulnerability of the hippocampus to insults: links to blood–brain barrier dysfunction. Int J Mol Sci. 2024;25(4):1991.
  27. Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Military Medical Research. 2020;7(1):7.
  28. Andrade C. Mean difference, standardized mean difference (SMD), and their use in meta-analysis: as simple as it gets. J Clin Psychiatry. 2020;81(5):11349.
  29. Wang X, Wang C, Pei G. α-secretase ADAM10 physically interacts with β-secretase BACE1 in neurons and regulates CHL1 proteolysis. J Mol Cell Biol. 2018;10(5):411-22.
  30. Oliveira Monteiro e Pereira de Almeida MP, Valle Pedroso R, Mantellatto Grigoli M, Vicente Silva T, Manzine PR, Cominetti MR. ADAM10 as a biomarker for Alzheimer's disease: A systematic review. Revue Neurologique. 2024;180(1):1-11.
  31. Wetzel S, Seipold L, Saftig P. The metalloproteinase ADAM10: A useful therapeutic target? Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2017;1864(11, Part B):2071-81.
  32. Khezri MR, Mohebalizadeh M, Ghasemnejad-Berenji M. Therapeutic potential of ADAM10 modulation in Alzheimer's disease: a review of the current evidence. Cell Commun Signal. 2023;21(1):60.
  33. Hönekopp J, Linden AH. Heterogeneity estimates in a biased world. PLoS One. 2022;17(2):e0262809.
  34. Zarini-Gakiye E, Vaezi G, Parivar K, Sanadgol N. Age and dose-dependent effects of alpha-lipoic acid on human microtubule- associated protein tau-induced endoplasmic reticulum unfolded protein response: implications for Alzheimer's disease. CNS Neurol Disord Drug Targets. 2021;20(5):451-64.
  35. Cho J, Shin M-K, Kim D, Lee I, Kim S, Kang H. Treadmill running reverses cognitive declines due to Alzheimer disease. Med Sci Sports Exerc. 2015;47(9):1814-24.
  36. Peron R, Vatanabe IP, Manzine PR, Camins A, Cominetti MR. Alpha-secretase ADAM10 regulation: insights into Alzheimer’s disease treatment. Pharmaceuticals. 2018;11(1):12.
  37. Page P. Beyond statistical significance: clinical interpretation of rehabilitation research literature. Int J Sports Phys Ther. 2014;9(5):726-36.
  38. Afonso J, Ramirez-Campillo R, Clemente FM, Büttner FC, Andrade R. The perils of misinterpreting and misusing “publication Bias” in meta-analyses: an education review on funnel plot-based methods. Sports Med. 2024;54(2):257-69.
  39. De Felice FG, Munoz DP. Opportunities and challenges in developing relevant animal models for Alzheimer’s disease. Ageing Res Rev. 2016; 26:112-4.
  40. Al Dahhan NZ, De Felice FG, Munoz DP. Potentials and pitfalls of cross-translational models of cognitive impairment. Front Behav Neurosci. 2019; 13:48.
  41. Zhou F-Q, Jiang J, Griffith CM, Patrylo PR, Cai H, Chu Y, et al. Lack of human-like extracellular sortilin neuropathology in transgenic Alzheimer’s disease model mice and macaques. Alzheimer's Res Ther. 2018; 10:1-15.
  42. Azkona G, Sanchez-Pernaute R. Mice in translational neuroscience: What R we doing? Prog Neurobiol. 2022; 217:102330.
  43. Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, García-Morales V, García-Cozar FJ, Ramos-Rodríguez JJ, et al. Therapeutic approach to Alzheimer’s disease: current treatments and new perspectives. Pharmaceutics. 2022;14(6):1117.
  44. Singh B, Day CM, Abdella S, Garg S. Alzheimer's disease current therapies, novel drug delivery systems and future directions for better disease management. J Control Release. 2024; 367:402-24.
  45. Ahmad F, Javed M, Athar M, Shahzadi S. Determination of affected brain regions at various stages of Alzheimer's disease. Neurosci Res. 2023; 192:77-82.
  46. Chasseigneaux S, Allinquant B. Functions of Aβ, sAPPα and sAPPβ: similarities and differences. J neurochem. 2012;120(Suppl 1):99-108.
  47. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry. 2021;26(10):5481-503.
  48. Struble RG, Ala T, Patrylo PR, Brewer GJ, Yan XX. Is brain amyloid production a cause or a result of dementia of the Alzheimer's type? J Alzheimer's Dis. 2010;22(2):393-9.
  49. Haass C, Selkoe D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PloS Biol. 2022;20(7):e3001694.
  50. Kauwe G, Tracy TE. Amyloid beta emerges from below the neck to disable the brain. PLoS Biol. 2021;19(9): e3001388.
  51. Liu Y, Studzinski C, Beckett T, Murphy MP, Klein RL, Hersh LB. Circulating neprilysin clears brain amyloid. Mol Cel Neurosci. 2010;45(2):101-7.
  52. Marr RA, Guan H, Rockenstein E, Kindy M, Gage FH, Verma I, et al. Neprilysin regulates amyloid β peptide levels. J Mol Neurosci. 2004; 22:5-11.
  53. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron. 2004;43(3):333-44.
  54. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907-13.
  55. DeMattos RB, Bales KR, Cummins DJ, Dodart J-C, Paul SM, Holtzman DMJPotNAoS. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2001;98(15):8850-5.
  56. Thal DR, Rüb U, Orantes M, Braak H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791-800.
  57. Stephen R, Hongisto K, Solomon A, Lönnroos E. Physical activity and Alzheimer’s disease: a systematic review. J Gerontol A: Biol Sci Med Sci. 2017;72(6):733-9.
  58. Manzine PR, Ettcheto M, Cano A, Busquets O, Marcello E, Pelucchi S, et al. ADAM10 in Alzheimer's disease: pharmacological modulation by natural compounds and its role as a peripheral marker. Biomed Pharmacother. 2019; 113:108661.
  59. Botteri G, Salvadó L, Gumà A, Hamilton DL, Meakin PJ, Montagut G, et al. The BACE1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling. Metabolism. 2018; 85:59-75.
  60. Das B, Singh N, Yao AY, Zhou J, He W, Hu X, et al. BACE1 controls synaptic function through modulating release of synaptic vesicles. Mol Psychiatry. 2021;26(11):6394-410.
  61. Yen S, Wu H-Y, Wang Y, Huang C-M, Wu CW, Chen J-H, et al. Revisiting the effects of exercise on cerebral neurovascular functions in rats using multimodal assessment techniques. iScience. 2023;26(4):354.
  62. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017-22.
  63. Chao F-l, Zhang L, Zhang Y, Zhou C-n, Jiang L, Xiao Q, et al. Running exercise protects against myelin breakdown in the absence of neurogenesis in the hippocampus of AD mice. Brain Res. 2018; 1684:50-9.
  64. Adlard PA, Perreau VM, Pop V, Cotman CWJJoN. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25(17):4217-21.
  65. Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, et al. Advancing Alzheimer's therapeutics: exploring the impact of physical exercise in animal models and patients. Cells. 2023;12(21).

  • تاریخ دریافت 11 شهریور 1403
  • تاریخ بازنگری 17 آذر 1403
  • تاریخ پذیرش 10 دی 1403