بررسی ارتباط پلی‌مورفیسم rs12722 در ژن COL5A1 و مکمل یاری امگا -3 با انعطاف‌پذیری، قدرت و توان در مردان جوان فعال

نوع مقاله : مقاله پژوهشی

نویسندگان
1 گروه تربیت بدنی و علوم ورزشی، دانشکده علوم انسانی و اجتماعی، دانشگاه کردستان، سنندج، کردستان، ایران
2 گروه تربیت بدنی و علوم ورزشی، واحد مریوان، دانشگاه آزاد اسلامی، مریوان، ایران
چکیده
هدف: ارتباط پلی‌مورفیسم rs12722 با انعطاف‌پذیری، قدرت و توان نیاز به انجام مطالعات بیشتری دارد و اثر امگا-3 بر این عوامل بررسی نشده است؛ بنابراین هدف پژوهش حاضر، بررسی ارتباط پلی‌مورفیسم rs12722 در ژن COL5A1 با انعطاف‌پذیری، قدرت و توان همراه با مصرف یک دوره امگا-3 بود. روش پژوهش: تعداد 85 داوطلب مرد فعال (سن: سال 3/4±4/26، قد: سانتی‌متر 8/7±7/172، وزن: کیلوگرم 6/9±5/82، درصد چربی: 1/7±3/19) در یک طرح تصادفی، دوسوکور به دو گروه مکمل (43 نفر) و دارونما (42 نفر) تقسیم شدند. شرکت‌کنندگان طی هشت هفته انجام تمرین مقاومتی روتین خود با شدت 70 درصد یک تکرار بیشینه تواتر سه جلسه در هفته، روزانه سه کپسول پوشیده شده با ژلاتین (1 کپسول در صبح، 1 عدد در ناهار و 1 عدد در شب) حاوی سه گرم n-3 PUFA (2145 میلی‌گرم EPA و 858 میلی‌گرم DHA) یا دارونما مصرف کردند. DNA مستخرج از نمونه‌های خونی، برای پلی‌مورفیسم rs12722 آزمایش شد. انعطاف‌پذیری، قدرت و توان عضلانی پایین‌تنه 48 ساعت قبل و بعد از هشت هفته ارزیابی شد.یافته ها:  در شرایط پیش‌آزمون، پلی‌مورفیسم rs12722 ارتباط معناداری با انعطاف‌پذیری داشت (39/0=η2، 02/0=p، 56/7=F) و افراد دارای آلل CC انعطاف‌پذیری بیشتری نسبت به آلل TT و CT داشتند، اما این ارتباط با قدرت (09/0=η2، 22/0=p، 13/2=F) و توان (11/0=η2، 36/0=p، 85/0=F) مشاهده نشد. همچنین یک دوره مکمل یاری امگا-3 تغییرات معناداری را در انعطاف‌پذیری، قدرت و توان آلل های مختلف پلی‌مورفیسم rs12722 ایجاد نکرد (05/0p>). نتیجه گیری: در پلی‌مورفیسم COL5A1 rs12722، افراد دارای آلل CC انعطاف‌پذیری بیشتری نسبت به الل TT و CT دارند، اما مطالعه حاضر این دیدگاه را تأیید نمی‌کند که پلی‌مورفیسم COL5A1 rs12722 با قدرت و توان ارتباط دارد، یا اینکه پلی‌مورفیسم rs12722 یک عامل اثرگذار بر مکمل یاری امگا-3 بر انعطاف‌پذیری، قدرت و توان جمعیت آزمایش‌شده این مطالعه باشد.
کلیدواژه‌ها

موضوعات


1.     Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, et al. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. European Journal of Applied Physiology. 2022;122(8):1811-30. https://doi.org/10.1007/s00421-022-04945-z.
2.     Dines HR, Nixon J, Lockey SJ, Herbert AJ, Kipps C, Pedlar CR, et al. Collagen gene polymorphisms previously associated with resistance to soft-tissue injury are more common in competitive runners than nonathletes. The Journal of Strength & Conditioning Research. 2023;37(4):799-805. https://doi.org/10.1519/JSC.0000000000004291.
3.     Bertuzzi R, Pasqua LA, Bueno S, Lima-Silva AE, Matsuda M, Marquezini M, et al. Is the COL5A1 rs12722 gene polymorphism associated with running economy? PLoS One. 2014;9(9):e106581 . https://doi.org/10.1371/journal.pone.0106581 .
4.     Eynon N, Hanson ED, Lucia A, Houweling PJ, Garton F, North KN, et al. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine. 2013;43:803-17. https://doi.org/10.1007/s40279-013-0059-4
5.     Holwerda AM, van Loon LJ. The impact of collagen protein ingestion on musculoskeletal connective tissue remodeling: a narrative review. Nutrition Reviews. 2022;80(6):1497-514 . https://doi.org/10.1093/nutrit/nuab083 
6.      Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. Journal of CELL SCIENCE. 1990;95(4):649-57. https://doi.org/10.1242/jcs.95.4.649
7.     Bulbul A, Ari E, Apaydin N, Ipekoglu G. The impact of genetic polymorphisms on anterior cruciate ligament injuries in athletes: a meta-analytical approach. Biology. 2023;12(12):1526. https://doi.org/10.3390/biology12121526
8.     Lim S-T, Kim C-S, Kim W-N, Min S-K. The COL5A1 genotype is associated with range of motion. Journal of Exercise Nutrition & Biochemistry. 2015;19(2):49–53. https://doi.org/10.5717/jenb.2015.15052701  
9.     Collins M, Posthumus M. Type V collagen genotype and exercise-related phenotype relationships: a novel hypothesis. Exercise and Sport Sciences Reviews. 2011;39(4):191-8. https://doi.org/10.1097/JES.0b013e318224e853
10. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. Journal of Applied Physiology. 2001;90(2):520-7.  https://doi.org/10.1152/jappl.2001.90.2.520  
11. Brown JC, Miller C-J, Posthumus M, Schwellnus MP, Collins M. The COL5A1 gene, ultra-marathon running performance, and range of motion. International Journal of Sports Physiology and Performance. 2011;6(4):485-96. https://doi.org/10.1123/ijspp.6.4.485
12. Miyamoto-Mikami E, Miyamoto N, Kumagai H, Hirata K, Kikuchi N, Zempo H, et al. COL5A1 rs12722 polymorphism is not associated with passive muscle stiffness and sports-related muscle injury in Japanese athletes. BMC Medical Genetics. 2019;20:1-9. https://doi.org/10.1186/s12881-019-0928-2
13. Zdzieblik D, Oesser S, Baumstark MW, Gollhofer A, König D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. British Journal of Nutrition. 2015;114(8):1237-45. https://doi.org/10.1017/S0007114515002810
14. Chen M, Zhu X, Zhang L, Zhao D. COL5A2 is a prognostic-related biomarker and correlated with immune infiltrates in gastric cancer based on transcriptomics and single-cell RNA sequencing. BMC Medical Genomics. 2023;16(1):220. https://doi.org/10.1186/s12920-023-01659-9
15. Chilton FH, Manichaikul A, Yang C, O'Connor TD, Johnstone LM, Blomquist S, et al. Interpreting clinical trials with omega-3 supplements in the context of ancestry and FADS genetic variation. Frontiers in Nutrition. 2022;8:808054. https://doi.org/10.3389/fnut.2021.808054
16. Tremblay BL, Guénard F, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clinical epigenetics. 2017;9:1-9. https://doi.org/10.1186/s13148-017-0345-3
17. Therdyothin A, Phiphopthatsanee N, Isanejad M. The effect of omega-3 fatty acids on sarcopenia: mechanism of action and potential efficacy. Marine Drugs. 2023;21(7):399. https://doi.org/10.3390/md21070399  
18. Kyriakidou Y, Wood C, Ferrier C, Dolci A, Elliott B. The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. Journal of the International Society of Sports Nutrition. 2021;18:1-11. https://doi.org/10.1186/s12970-020-00405-1
19. Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. Journal of Physical Education, Recreation & Dance. 1993;64(1):88-90. https://doi.org/10.1080/07303084.1993.10606684
20. Pollock ML, Jackson AS. Research progress in validation of clinical methods of assessing body composition. Medicine and Science in Sports and Exercise. 1984;16(6):606-15.
21. Ten Hoor GA, Musch K, Meijer K, Plasqui G. Test-retest reproducibility and validity of the back-leg-chest strength measurements. Isokinetics and Exercise Science. 2016;24:209–16. https://doi.org/10.3233/IES-160619  
22. Collins M, Mokone G, September A, Van der Merwe L, Schwellnus M. The COL5A1 genotype is associated with range of motion measurements. Scandinavian Journal of Medicine & Science in Sports. 2009;19(6):803-10. https://doi.org/10.1111/j.1600-0838.2009.00915.x  
23. Brown J, Miller CJ, Schwellnus M, Collins M. Range of motion measurements diverge with increasing age for COL5A1 genotypes. Scandinavian Journal of Medicine & Science in Sports. 2011;21(6):e266-e72. https://doi.org/10.1111/j.1600-0838.2010.01271.x
24. Silva CC, Silva LF, Santos CR, Goldberg TB, Ramos SP, Venancio EJ. Genetic polymorphism on the flexibility of elite rhythmic gymnasts: State of art. Apunts Medicina de l'Esport. 2019;54(201):27-35. https://doi.org/10.1016/j.apunts.2018.10.001  
25. Kim JH, Jung ES, Kim C-H, Youn H, Kim HR. Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. Journal of exercise nutrition & biochemistry. 2014;18(2):205 . https://doi.org/10.5717/jenb.2014.18.2.205
26. Posthumus M, Raleigh SM, Ribbans WJ, Schwellnus MP, Collins M. A functional variant within the MMP3 gene does not associate with human range of motion. Journal of Science and Medicine in Sport. 2010;13(6):630-2. https://doi.org/10.1016/j.jsams.2010.01.006
27. Kuno M, Fukunaga T, Hirano Y, Miyashita M. Anthropometric variables and muscle properties of Japanese female ballet dancers. International journal of sports medicine. 1996;17(2):100-5.
28. Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. The American Journal of Sports Medicine. 2009; 37(11):2234-40. https://doi.org/10.1177/0363546509338266
29. Gharakhanlou R, Mollanouri Shamsi M. Investigating the relationship between ACTN3 rs1815739 and COL5A1 rs12722 polymorphisms with power performance following plyometric exercises. Research in Sport Medicine and Technology. 204. In Press.
30. Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. Journal of Applied Physiology. 2005;99(1):154-63. https://doi.org/10.1152/japplphysiol.01139.2004
31. Miyamoto-Mikami E, Miyamoto N, Kumagai H, Hirata K, Kikuchi N, Zempo H, et al. COL5A1 rs12722 polymorphism is not associated with passive muscle stiffness and sports-related muscle injury in Japanese athletes. BMC Medical Genetics. 2019;20(1):1-9. https://doi.org/10.1186/s12881-019-0928-2
32. Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, et al. Genetic variants within NOGGIN, COL1A1, COL5A1, and IGF2 are associated with musculoskeletal injuries in elite male Australian football league players: a preliminary study. Sports Medicine-Open. 2022;11;8(1):126. https://doi.org/10.1186/s40798-022-00522-y
33. Fernández-Lázaro D, Arribalzaga S, Gutiérrez-Abejón E, Azarbayjani MA, Mielgo-Ayuso J, Roche E. Omega-3 fatty acid supplementation on post-exercise inflammation, muscle damage, oxidative response, and sports performance in physically healthy adults—a systematic review of randomized controlled trials. Nutrients. 2024;16(13):2044. https://doi.org/10.3390/nu16132044
34. Anacleto GMC, Rica RL, Maifrino LBM, Maia AF, Ribeiro SML, Bocalini DS, et al. Additional effects of stretching training program and supplementation with ômega-3 in older people. Journal of Physical Education and Sport. 2019;19:473-80. https://doi.org/10.7752/jpes.2019.s2069
35. Gammone MA, Riccioni G, Parrinello G, D’Orazio N. Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients. 2019;11(1):46. https://doi.org/10.3390/nu11010046
36. Balachandran A, Gundermann DM, Walkup MP, King AC, Ambrosius WT, Kritchevsky SB, et al. Association of fish oil and physical activity on mobility disability in older adults. Medicine and Science in Sports and Exercise. 2020;52(4):859. https://doi.org/10.1249/MSS.0000000000002195
37. Moon GK, Bu SY. Effects of Omega-3 Fatty acid supplementation on skeletal muscle mass and strength in adults: a systematic review. Clinical Nutrition Research. 2023;12(4):304. https://doi.org/10.7762/cnr.2023.12.4.304
38. Cornish SM, Cordingley DM, Shaw KA, Forbes SC, Leonhardt T, Bristol A, et al. Effects of omega-3 supplementation alone and combined with resistance exercise on skeletal muscle in older adults: a systematic review and meta-analysis. Nutrients. 2022;14(11):2221. https://doi.org10.3390/nu14112221
دوره 17، شماره 65
شهریور 1404
صفحه 71-34

  • تاریخ دریافت 22 اسفند 1403
  • تاریخ بازنگری 21 خرداد 1404
  • تاریخ پذیرش 05 تیر 1404