6.
Turner RS, Stubbs T, Davies DA, Albensi BC. Potential new approaches for diagnosis of Alzheimer's disease and related dementias. Frontiers in neurology. 2020;11:496.
https://doi.org/10.3389/fneur.2020.00496
7.
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer’s Disease: current definitions and cellular and molecular mechanisms. Molecular neurodegeneration. 2024;19(1):33.
https://doi.org/10.1186/s13024-024-00719-7
8.
Tavares R, Martins S, Almeida-Santos T, Sousa A, Ramalho-Santos J, da Cruz e Silva O. Alzheimer’s disease-related amyloid-β 1–42 peptide induces the loss of human sperm function. Cell and Tissue Research. 2017;369:647-51.
https://doi.org/10.1007/s00441-017-2665-1
11.
Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE, et al. Amyloid‐β efflux from the central nervous system into the plasma. Annals of neurology. 2014;76(6):837-44.
https://doi.org/10.1002/ana.24270
12.
Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer’s amyloid-β 1-40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. The Journal of clinical investigation. 2000;106(12):1489-99.
https://doi.org/10.1172/JCI10498
13.
Preston S, Steart P, Wilkinson A, Nicoll J, Weller R. Capillary and arterial cerebral amyloid angiopathy in Alzheimer's disease: defining the perivascular route for the elimination of amyloid β from the human brain. Neuropathology and applied neurobiology. 2003;29(2):106-17.
https://doi.org/10.1046/j.1365-2990.2003.00424.x
14.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science translational medicine. 2012;4(147):147ra11-ra11.
https://www.science.org/doi/10.1126/scitranslmed.3003748
16.
Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, et al. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids and Barriers of the CNS. 2011;8:1-11.
https://doi.org/10.1186/2045-8118-8-21
18.
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-41.
https://doi.org/10.1038/nature14432
19.
Yang W, Wei Z, Wang T. Unraveling the Role of LRP1 in Alzheimer’s Disease: A Focus on Aβ Clearance and the Liver-Brain Axis. Journal of Molecular Neuroscience. 2025;75(2):43.
https://doi.org/10.1007/s12031-025-02339-2
23.
M Stranahan A, Martin B, Maudsley S. Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer's disease. Current Alzheimer Research. 2012;9(1):86-92.
https://doi.org/10.2174/156720512799015019
24.
Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, et al. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiology of learning and memory. 2012;97(1):90-6.
https://doi.org/10.1016/j.nlm.2011.09.008
26.
Palasz E, Gasiorowska-Bien A, Drapich P, Niewiadomski W, Niewiadomska G. Steady Moderate Exercise Confers Resilience Against Neurodegeneration and Neuroinflammation in a Mouse Model of Parkinson’s Disease. International Journal of Molecular Sciences. 2025;26(3):1146.
https://doi.org/10.3390/ijms26031146
27.
Mota BC, Pereira L, Souza MA, Silva LFA, Magni DV, Ferreira APO, et al. Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotoxicity Research. 2012;21:175-84.
https://doi.org/10.1007/s12640-011-9257-8
28.
Rafie F, Khaksari M, Amiresmaili S, Soltani Z, Pourranjbar M, Shirazpour S, et al. Protective effects of early exercise on neuroinflammation, and neurotoxicity associated by traumatic brain injury: a behavioral and neurochemical approach. International Journal of Neuroscience. 2024;134(7):700-13.
https://doi.org/10.1080/00207454.2022.2144294
29.
Talebi M, Ayatollahi SA, As’Habi MA, Kobarfard F, Khoramjouy M, Boroujeni FN, et al. Investigating the neuroprotective effects of Dracocephalum moldavica extract and its effect on metabolomic profile of rat model of sporadic Alzheimer's disease. Heliyon. 2025;11(3).
https://doi.org/10.1016/j.heliyon.2025.e42412
30.
Souza LC, Filho CB, Goes AT, Fabbro LD, de Gomes MG, Savegnago L, et al. Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by β-amyloid 1–40 peptide. Neurotoxicity research. 2013;24:148-63.
https://link.springer.com/article/10.1007/s12640-012-9373-0
31.
Talebi V, Alamdari KA, Patel DI. Simple and complex wheel running effect on depression, memory, neuroinflammation, and neurogenesis in Alzheimer's rat model. Medicine and science in sports and exercise. 2024;56(6):1159-67.
https://doi.org/ 10.1249/MSS.0000000000003394
32.
Thomas R, Zimmerman SD, Yuede KM, Cirrito JR, Tai LM, Timson BF, et al. Exercise training results in lower amyloid plaque load and greater cognitive function in an intensity dependent manner in the Tg2576 mouse model of Alzheimer’s disease. Brain sciences. 2020;10(2):88.
https://doi.org/10.3390/brainsci10020088
33.
Gross S, Danielyan L, Buechler C, Kubitza M, Klein K, Schwab M, et al. Hepatic amyloid Beta-42-metabolizing proteins in liver steatosis and metabolic dysfunction-associated Steatohepatitis. International Journal of Molecular Sciences. 2024;25(16):8768.
https://doi.org/ 10.3390/ijms25168768
34.
Francis N, Robison LS, Popescu DL, Michaelos M, Hatfield J, Xu F, et al. Voluntary wheel running reduces amyloid-β42 and rescues behavior in aged Tg2576 mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease. 2020;73(1):359-74.
https://doi.org/ 10.3233/JAD-190810
35.
Zhang X, He Q, Huang T, Zhao N, Liang F, Xu B, et al. Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications. Frontiers in aging neuroscience. 2019;11:78.
https://doi.org/ 10.3233/JAD-190810
36.
He X-f, Liu D-x, Zhang Q, Liang F-y, Dai G-y, Zeng J-s, et al. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Frontiers in molecular neuroscience. 2017;10:144.
https://doi.org/ 10.3389/fnmol.2017.00144
37.
Khodadadi D, Gharakhanlou R, Naghdi N, Salimi M, Azimi M, Shahed A, et al. Treadmill exercise ameliorates spatial learning and memory deficits through improving the clearance of peripheral and central amyloid-beta levels. Neurochemical research. 2018;43(8):1561-74.
https://doi.org/10.1007/s11064-018-2571-2
40.
McKenzie IA, Ohayon D, Li H, De Faria JP, Emery B, Tohyama K, et al. Motor skill learning requires active central myelination. science. 2014;346(6207):318-22.
https://doi.org/ 10.1126/science.1254960
41.
Amani M, Zolghadrnasab M, Salari A-A. NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiology & behavior. 2019;202:52-61.
https://doi.org/10.1016/j.physbeh.2019.01.005
42.
Bashiri H, Enayati M, Bashiri A, Salari A-A. Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiology & Behavior. 2020;223:113003.
https://doi.org/10.1016/j.physbeh.2020.113003
43.
Alipour HR, Yaghmaei P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. A study on alpha-terpineol in Alzheimer’s disease with the use of rodent in vivo model, restraint stress effect and in vitro Amyloid beta fibrils. Brazilian Journal of Pharmaceutical Sciences. 2022 May 6;58:e19090.
https://doi.org/10.1590/s2175-97902022e19090
44.
Späni C, Suter T, Derungs R, Ferretti MT, Welt T, Wirth F, et al. Reduced β-amyloid pathology in an APP transgenic mouse model of Alzheimer’s disease lacking functional B and T cells. Acta neuropathologica communications. 2015;3(1):71.
https://doi.org/10.1186/s40478-015-0251-x
45.
Kocahan S, Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: the brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clinical Psychopharmacology and Neuroscience. 2017;15(1):1.
https://doi.org/10.9758/cpn.2017.15.1.1
46.
Xu W, Chi L, Row B, Xu R, Ke Y, Xu B, et al. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience. 2004;126(2):313-23.
https://doi.org/ 10.1016/j.neuroscience.2004.03.055
48.
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future. Signal transduction and targeted therapy. 2023;8(1):248.
https://doi.org/10.1038/s41392-023-01484-7
50.
Yokoyama H, Okazaki K, Imai D, Yamashina Y, Takeda R, Naghavi N, et al. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial. BMC geriatrics. 2015;15(1):60.
https://doi.org/10.1186/s12877-015-0058-4
51.
Pham TCP, Raun SH, Havula E, Henriquez-Olguín C, Rubalcava-Gracia D, Frank E, et al. The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms. Nature Communications. 2024;15(1):9826.
https://doi.org/10.1038/s41467-024-54183-4
52.
Lagouge M, Mourier A, Lee HJ, Spåhr H, Wai T, Kukat C, et al. SLIRP regulates the rate of mitochondrial protein synthesis and protects LRPPRC from degradation. PLoS genetics. 2015;11(8):e1005423.
https://doi.org/10.1371/journal.pgen.1005423
54.
Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S, et al. Systemic catabolism of Alzheimer's Aβ40 and Aβ42. Journal of Biological Chemistry. 2004;279(44):45897-908.
https://doi.org/10.1074/jbc.M407668200
55.
Tamaki C, Ohtsuki S, Iwatsubo T, Hashimoto T, Yamada K, Yabuki C, et al. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid β-peptide by the liver. Pharmaceutical research. 2006;23:1407-16.
https://doi.org/10.1007/s11095-006-0208-7
56.
Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, et al. Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proceedings of the National Academy of Sciences. 2012;109(9):3510-5.
https://doi.org/10.1073/pnas.1112209109
57.
Qosa H, Kaddoumi A. Effect of mouse strain as a background for Alzheimer’s disease models on the clearance of amyloid-β. Journal of systems and integrative neuroscience. 2016;2(2):135.
https://doi.org/ 10.15761/JSIN.1000123
58.
Höfling C, Morawski M, Zeitschel U, Zanier ER, Moschke K, Serdaroglu A, et al. Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor protein‐specific antibodies. Aging Cell. 2016;15(5):953-63.
https://doi.org/10.1111/acel.12508
59.
Roddick KM, Roberts AD, Schellinck HM, Brown RE. Sex and genotype differences in odor detection in the 3× Tg-AD and 5XFAD mouse models of Alzheimer’s disease at 6 months of age. Chemical Senses. 2016;41(5):433-40.
https://doi.org/10.1093/chemse/bjw018
60.
Gillette-Guyonnet S, Nourhashémi F, Andrieu S, de Glisezinski I, Ousset PJ, Rivière D, et al. Weight loss in Alzheimer disease. The American journal of clinical nutrition. 2000;71(2):637S-42S.
https://doi.org/10.1093/ajcn/71.2.637s
61.
Morrow CB, Leoutsakos J, Yan H, Onyike C, Kamath V. Weight change and neuropsychiatric symptoms in Alzheimer’s disease and frontotemporal dementia: Associations with cognitive decline. Journal of Alzheimer's Disease Reports. 2023;7(1):767-74.
https://doi.org/10.3233/ADR-230034
62.
Lachowska J, Senior K, Smandek J, Mielczarek M, Sroczyńska P, Sroczyński J. The Effect of Physical Activity on Alzheimer’s Disease-Systematic Review. Quality in Sport. 2025;37:57782-.
https://doi.org/10.12775/QS.2024.37.57782