1.
Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Journal of Cardiac Failure. 2021;27(4):387–413.
https://doi.org/10.1016/j.cardfail.2021.01.022
2. Traub J, Frey A, Störk S. Chronic neuroinflammation and cognitive decline in patients with cardiac disease: evidence, relevance, and therapeutic implications. Life. 2023;13(2):
329. https://doi.org/10.3390/life13020329
3. Kim, S., Jung, U. J., & Kim, S. R.Role of oxidative stress in blood–brain barrier disruption and neurodegenerative diseases. International Journal of Molecular Sciences. 2024;13(12):1462. https://doi.org/10.3390/antiox13121462
4. Gryka-Marton M, Grabowska AD, Szukiewicz D. Breaking the barrier: the role of proinflammatory cytokines in BBB dysfunction. Int J Mol Sci. 2025;26(8):3532. https://doi.org/10.3390/ijms26083532
5. Lee, R.-L., & Funk, K. E. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Frontiers in Aging Neuroscience. 2023;11440;36.
https://doi.org/10.3389/fnagi.2023.1144036
6. Althammer F, Roy RK, Kirchner MK, Whitley KE, Davis S, Montanez J, et al. Angiotensin II-mediated neuroinflammation in the hippocampus contributes to neuronal deficits and cognitive impairment in heart failure rats. Hypertension.2023;80(6):1258-73. https://doi.org/10.1161/HYPERTENSIONAHA.123.21070
7. Labaka A, Gómez-Lázaro E, Vegas O, Pérez-Tejada J, Arregi A, Garmendia L, et al. Reduced hippocampal IL-10 expression, altered monoaminergic activity and anxiety and depressive-like behavior in female mice subjected to chronic social instability stress. Behav Brain Res. 2017;335:8–18. https://doi.org/10.1016/j.bbr.2017.08.002
8. Ying ZJ, Huang YY, Shao MM, Chi CH, Jiang MX, Chen YH, et al. Relationships of low serum levels of interleukin-10 with post-stroke anxiety and cognitive impairment in patients with clinical acute stroke. J Clin Neurol. 2023;19(3):242.
https://doi.org/10.3988/jcn.2022.0151
9. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G, et al. Neuroinflammation pathways: a general review. Int J Neurosci. 2017;127(7).
https://doi.org/10.1080/00207454.2016.1212854
10. Seo DY, Heo JW, Ko JR, Kwak HB, et al. Exercise and neuroinflammation in health and disease. Int Neurourol J.
International Neurourology Journal. 2019;
23(Suppl 2):S82–S92.
https://doi.org/10.5213/inj.1938214.107
11. van der Pol A, van Gilst WH, Voors AA, van der Meer P, et al. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019;21(3):425–35.
https://doi.org/10.1002/ejhf.1320
12. Nie, J., & Yang, X.Modulation of synaptic plasticity by exercise training as a basis for ischemic stroke rehabilitation.
Cellular and Molecular Neurobiology. 2017;37(1):5-16.
https://doi.org/10.1007/s10571-016-0348-1
13. Romero Garavito A, Díaz Martínez V, Juárez Cortés E, Negrete Díaz JV, Montilla Rodríguez LM, et al. Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases.
Frontiers in Neurology. 2025;15:1505879.
https://doi.org/10.3389/fneur.2024.1505879
14. Qu H, Liu R, Chen J, Zheng L, Chen R. Aerobic exercise inhibits CUMS-depressed mice hippocampal inflammatory response via activating hippocampal miR-223/TLR4/MyD88-NF-κB pathway.
International Journal of Environmental Research and Public Health. 2020;17(8):
2645.
https://doi.org/10.3390/ijerph17082645
15. Mee-inta O, Zhao ZW, Kuo YM.Physical exercise inhibits inflammation and microglial activation.
International Journal of Molecular Sciences. 2019;20(6):1474.
https://doi.org/10.3390/ijms20061474
16. Ferreira GD, Oliveira J, Silva AG. Respiratory training improved ventilatory function and respiratory muscle strength in patients with multiple sclerosis and lateral amyotrophic sclerosis: Systematic review and meta-analysis.
Physiotherapy. 2016;
102(4):321–8.
https://doi.org/10.1016/j.physio.2016.01.002
17. Zhang X, He Q, Huang T, Zhao N, Liang F, Xu B, et al. Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications.
Frontiers in Aging Neuroscience. 2019;11:78.
https://doi.org/10.3389/fnagi.2019.00078
18. Park SS, Park HS, Jeong H, Kwak HB, No MH. Treadmill exercise ameliorates chemotherapy-induced muscle weakness and central fatigue by enhancing mitochondrial function and inhibiting apoptosis.
International Neurourology Journal. 2019;
23(Suppl 1):S32–S39.
https://doi.org/10.5213/inj.1938046.023
19. Feng, W., & Li, W.The study of ISO induced heart failure rat model.
Experimental and Molecular Pathology. 2010;88(2):299–304.
https://doi.org/10.1016/j.yexmp.2009.10.011
20. Pan Y, Gao J, Gu R, Song W, Li H, Wang J, et al. Effect of injection of different doses of isoproterenol on the hearts of mice.
BMC Cardiovascular Disorders. 2022;22(409).
https://doi.org/10.1186/s12872-022-02852-x
21. Hoydal MA, Wisloff U, Kemi OJ, Ellingsen O
.Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training.
European Journal of Cardiovascular Prevention & Rehabilitation. 2007;14(6):753–60.
https://doi.org/10.1097/HJR.0b013e3281eacef1
22. Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, et al.High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats.
Physiology & Behavior. 2018;184:6–11.
https://doi.org/10.1016/j.physbeh.2017.10.027
23. Malczynska-Sims P, Chalimoniuk M, Wronski Z, Marusiak J, Sulek A, et al. High-intensity interval training modulates inflammatory response in Parkinson’s disease.
Aging Clinical and Experimental Research. 2022;34:2165–76.
https://doi.org/10.1007/s40520-022-02153-5
24. Landers MR, Navalta JW, Murtishaw AS, Kinney JW, Pirio Richardson S, et al. A high-intensity exercise boot camp for persons with Parkinson disease: A phase II, pragmatic, randomized clinical trial of feasibility, safety, signal of efficacy, and disease mechanisms.
Journal of Neurologic Physical Therapy. 2019;43(1):12–25.
https://doi.org/10.1097/NPT.0000000000000249
25. Szymura J, Kubica J, Wiecek M, Pera.The immunomodulatory effects of systematic exercise in older adults and people with Parkinson’s disease.
Journal of Clinical Medicine. 2020;9(1):184.
https://doi.org/10.3390/jcm9010184
26. Spielman LJ, Little JP, Klegeris A.Physical activity and exercise attenuate neuroinflammation in neurological diseases.
Brain Research Bulletin. 2016;125:19–29.
https://doi.org/10.1016/j.brainresbull.2016.03.012
27. Abd El-Kader SM, Al-Jiffri OH. Aerobic exercise modulates cytokine profile and sleep quality in elderly.
African Health Sciences. 2019;19(2):2198–207.
https://dx.doi.org/10.4314/ahs.v19i2.45
28. Nunes, R. B., Alves, J. P., Kessler, L. P., & Dal Lago, P.Aerobic exercise improves the inflammatory profile correlated with cardiac remodeling and function in chronic heart failure rats.
Clinics. 2013;68(6):876–82.
https://doi.org/10.6061/clinics/2013(06)24
29. Kohman, R. A., DeYoung, E. K., Bhattacharya, T. K., Peterson, L. N., & Rhodes, J. S. Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice. Brain, Behavior, and Immunity. 2012;26(5):803–10.
https://doi.org/10.1016/j.bbi.2011.10.006
30. Libardi CA, Souza GV, Gáspari AF, Dos Santos CF, Leite ST, et al. Effect of resistance, endurance, and concurrent training on TNF-α, IL-6, and CRP.
Medicine & Science in Sports & Exercise. 2012;44(1):50–6.
https://doi.org/10.1249/MSS.0b013e318229d2e9
31. Abd El-Kader SM, Al-Shreef FM. Inflammatory cytokines and immune system modulation by aerobic versus resisted exercise training for elderly. Afr Health Sci. 2018;18:120–31. https://doi.org/10.4314/ahs.v18i1.16
32. Rall LC, Roubenoff R, Cannon JG, Abad LW, Dinarello CA, et al.Effects of progressive resistance training on immune response in aging and chronic inflammation.
Medicine & Science in Sports & Exercise. 1996;28(11):1356–65.
https://doi.org/10.1097/00005768-199611000-00003
33. Barry JC, Simtchouk S, Durrer C, Jung ME, Mui AL, Little JP.Short-term exercise training reduces anti-inflammatory action of interleukin-10 in adults with obesity.
Cytokine. 2018;111:44–50.
https://doi.org/10.1016/j.cyto.2018.05.035
34. Garneau L, Terada T, Mistura M, Mulvihill EE, Reed JL, Aguer C.Exercise training reduces circulating cytokines in male patients with coronary artery disease and type 2 diabetes: A pilot study.
Physiological Reports. 2023;11(5):e15634.
http://doi.org/2010.14814/phy2.15634
35. Tóth K, Oroszi T, van der Zee EA, Nyakas C, Schoemaker RG
. The effects of exercise training on heart, brain and behavior, in the isoproterenol-induced cardiac infarct model in middle-aged female rats. Scientific Reports. 2022;12:10095. https://doi.org/10.1038/s41598-022-14168-z
36. Wang S, Zhou Y, Wu Y, Lang X, Mao Z, Pan X, Gao Y.Long-term aerobic exercise improves learning memory capacity and effects on oxidative stress levels and Keap1/Nrf2/GPX4 pathway in the hippocampus of APP/PS1 mice.
Frontiers in Neuroscience. 2024;18:1505650.
https://doi.org/10.3389/fnins.2024.1505650
37. Lu K, Wang L, Wang C, Yang Y, Hu D, Ding R. Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model.
Molecular Medicine Reports. 2015;12(2):2374–82.
https://doi.org/10.3892/mmr.2015.3669
38. El Assar M, Álvarez-Bustos A, Sosa P, Angulo J, Rodríguez-Mañas L. Effect of physical activity/exercise on oxidative stress and inflammation in muscle and vascular aging.
International Journal of Molecular Sciences. 2022(15);8713.
https://doi.org/10.3390/ijms23158713
39. Ebrahimnezhad N, Nayebifar S, Soltani Z, Khoramipour K.High-intensity interval training reduced oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes: the role of the PGC1α-Keap1-Nrf2 signaling pathway.
Iranian Journal of Basic Medical Sciences. 2023;26(12):1313–9.
https://doi.org/10.22038/IJBMS.2023.70833.153872