فیزیولوژی ورزشی

فیزیولوژی ورزشی

تأثیر یک دوره تمرین عملکردی شدید و مصرف تری‌گلیسرید زنجیره متوسط بر تغییرات نورومتابولیت‌های مغزی از طریق طیف‌سنجی رزونانس مغناطیسی در بزرگسالان سالم دارای اضافه‌وزن و چاق

نوع مقاله : مقاله پژوهشی

نویسندگان
1 استاد گروه علوم زیستی در ورزش، دانشکده علوم ورزشی وتندرستی، دانشگاه شهید بهشتی، تهران، ایران
2 دانشجوی کارشناسی‌‌ارشد گروه علوم زیستی در ورزش، دانشکده علوم ورزشی وتندرستی، دانشگاه شهید بهشتی، تهران، ایران
3 دانشجوی کارشناسی‌ارشد فیزیولوژی ورزشی، دانشکده تربیت‌بدنی، دانشگاه آزاد اسلامی تهران واحد تهران شرق، تهران، ایران
4 دانشجوی دکتری گروه علوم زیستی در ورزش، دانشکده علوم ورزشی وتندرستی، دانشگاه شهید بهشتی، تهران، ایران
چکیده
هدف: چاقی با افزایش التهاب سیستمیک، خطر تخریب عصبی را افزایش می‌دهد. در این پژوهش، اثر شش هفته تمرین عملکردی شدید همراه با رژیم و مکمل کتوژنیک بر نورومتابولیت‌های مغزی -که از شاخص‌های مهم سلامت نورونی هستند- بررسی شد.
مواد و روش‌ها: در این کارآزمایی بالینی تصادفی، ۲۱ داوطلب دارای اضافه‌وزن یا چاق به سه گروه تقسیم شدند: تمرین عملکردی شدید (EX)؛ تمرین همراه با رژیم کتوژنیک حاوی تری‌گلیسریدهای زنجیره متوسط (MCT) (EX+KD)؛ گروه کنترل (C). تمرینات به مدت شش هفته، سه جلسه در هفته به ‌صورت عملکردی شدید انجام شد. متخصص تغذیه رژیم کتوژنیک را طراحی کرد و مکمل MCT به صورت روزانه مصرف شد. مقادیر نورومتابولیت‌ها با طیف‌نگاری رزونانس مغناطیسی پروتون (¹H-MRS) از ناحیه ورمیس مخچه (سیستم 1.5T Philips Ingenia) به‌صورت تک‌وُکسلی اندازه‌گیری و با نرم‌افزار Osprey پردازش شد. تحلیل داده‌ها با تحلیل واریانس یک‌طرفه (آنوا) و آزمون تعقیبی توکی انجام شد (05/0=α).
یافته‌ها: پس از مداخله، در مقایسه با گروه کنترل، سطح میواینوزیتول (mI) در گروه‌‌های EX و EX+KD به‌ترتیب 12 درصد و 57 درصد کاهش یافت؛ در حالی که سطح کولین (Cho) در همین گروه‌ها به‌ترتیب ۹۷ درصد و ۱۹۳ درصد افزایش داشت. همچنین سطح N-استیل آسپارتات (NAA) در گروه EX 91 درصد و در گروه EX+KD 38 درصد افزایش یافت که همه‌ این تغییرات در سطح معناداری 05/0>P معنا‌دار بود. تغییرات مشاهده‌شده نشان‌دهنده اثر معنادار مداخله‌ها بر شاخص‌های نورومتابولیتهای مغز بود.
نتیجه‌گیری: براساس نتایج پژوهش حاضر، تمرین عملکردی شدید به‌تنهایی موجب بهبود وضعیت نورومتابولیتهای مغز‌ می‌شود؛ یعنی Cho و NAA افزایش یافت و mI کاهش پیدا کرد؛ در حالی ‌که ترکیب ورزش با رژیم کتوژنیک حاوی MCT با تقویت تغییرات در Cho و mI، اثرات محافظتی قوی‌تری بر بافت عصبی داشت و این موضوع می‌تواند روند تخریب عصبی مرتبط با چاقی را مهار کند، اما این تأثیر هم‌افزایی بر NAA مشاهده نشد.
کلیدواژه‌ها

موضوعات


 
 
1. Ibrahim S, Akram Z, Noreen A, Baig MT, Sheikh S, Huma A, et al. Overweight and obesity prevalence and predictors in people living in Karachi. J Pharm Res Int. 2021;33(31B):194-202. https://doi.org/10.9734/jpri/2021/v33i31B31708/
2. Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, Silva-Pereyra J. Structural brain changes associated with overweight and obesity. Journal of Obesity. 2021;2021(1):6613385. https://doi.org/10.1155/2021/6613385/
3. Mueller K, Sacher J, Arelin K, Holiga Š, Kratzsch J, Villringer A, et al. Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Translational Psychiatry. 2012;2(12):e200-e. https://doi.org/10.1038/tp.2012.121 
4. Hwang JJ, Jiang L, Hamza M, Rangel ES, Dai F, Belfort-DeAguiar R, et al. Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. JCI Insight. 2017;2(20):e95913. https://doi.org/10.1172/jci.insight.95913/
5. Ledreux A, Håkansson K, Carlsson R, Kidane M, Columbo L, Terjestam Y, et al. Differential effects of physical exercise, cognitive training, and mindfulness practice on serum BDNF levels in healthy older adults: a randomized controlled intervention study. Journal of Alzheimer’s Disease. 2019;71(4):1245-61. https://doi.org/10.3233/JAD-190756/
6. Hashimoto T, Tsukamoto H, Ando S, Ogoh S. Effect of exercise on brain health: the potential role of lactate as a myokine. Metabolites. 2021;11(12):813. https://doi.org/10.3390/metabo11120813/
7. Rivas-Campo Y, Garcia-Garro PA, Aibar-Almazan A, Martinez-Amat A, Vega-Avila GC, Afanador-Restrepo DF, et al. The effects of high-intensity functional training on cognition in older adults with cognitive impairment: a systematic review. Healthcare. 2022;10(4):670. https://doi.org/10.3390/healthcare10040670/
8. Storoni M, Plant GT. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Multiple Sclerosis International. 2015;2015(1):681289  https://doi.org/681289/2015/10/1155
9. Paoli A. Ketogenic diet for obesity: friend or foe? International Journal of Environmental Research and Public Health. 2014;11(2):2092-107. https://doi.org/10.3390/ijerph110202092/
10. Westman EC, Tondt J, Maguire E, Yancy Jr WS. Implementing a low-carbohydrate, ketogenic diet to manage type 2 diabetes mellitus. Expert Review of Endocrinology & Metabolism. 2018;13(5):263-72. https://doi.org/10.1080/17446651.2018.1523713/
11. Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction. Journal of Neuroscience Research. 2017;95(11):2217-35. https://doi.org/10.1002/jnr.24064/
12. Avgerinos KI, Egan JM, Mattson MP, Kapogiannis D. Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease: a systematic review and meta-analysis of human studies. Ageing Research Reviews. 2020;58:101001. https://doi.org/10.1016/j.arr.2019.101001./
13. Xu Q, Zhang Y, Zhang X, Liu L, Zhou B, Mo R, et al. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer's disease patients with APOE4−/−: a double-blind, randomized, placebo-controlled crossover trial. Clinical Nutrition. 2020;39(7):2092-105. https://doi.org/10.1016/j.clnu.2019.10.017/
14. Juby AG, Blackburn TE, Mager DR. Use of medium chain triglyceride (MCT) oil in subjects with Alzheimer's disease: a randomized, double‐blind, placebo‐controlled, crossover study, with an open‐label extension. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2022;8(1):e12259.
15. Grochowska K, Przeliorz A. The effect of the ketogenic diet on the therapy of neurodegenerative diseases and its impact on improving cognitive functions. Dementia and geriatric Cognitive Disorders Extra. 2022;12(2):100-6. https://doi.org/10.1159/000524331/
16. Croteau E, Castellano C-A, Richard MA, Fortier M, Nugent S, Lepage M, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. Journal of Alzheimer's Disease. 2018;64(2):551-61. https://doi.org/10.3233/JAD-180202/
17. Taheri H, Elahifar MA, Bighamian A. Magnetic Resonance Spectroscopy in Neurological Disorders. Iranian Journal of Radiology (30th Iranian Congress of Radiology). 2014;11. https://doi.org/10.5812/iranjradiol.21326/
18. Zhao X, Han Q, Gang X, Wang G. Altered brain metabolites in patients with diabetes mellitus and related complications–evidence from 1H MRS study. Bioscience Reports. 2018;38(5):BSR20180660. https://doi.org/10.1042/BSR20180660/
19. Robatjazi M PA, Hassan Karimi H, Assadi M. Molecular imaging with Magnetic Resonance Spectroscopy (MRS). Iran South Med. 2015;18(1):210-21. [In Persian].
20. Pawlosky RJ, Kemper MF, Kashiwaya Y, King MT, Mattson MP, Veech RL. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTg AD mouse model of Alzheimer's disease. Journal of Neurochemistry. 2017;141(2):195-207.
21. Pawlosky RJ, Kashiwaya Y, King MT, Veech RL. A dietary ketone ester normalizes abnormal behavior in a mouse model of Alzheimer’s disease. International Journal of Molecular Sciences. 2020;21(3):1044.
22. Zhang F, Wu H, Jin Y, Zhang X. Proton magnetic resonance spectroscopy (H1-MRS) study of the ketogenic diet on repetitive mild traumatic brain injury in adolescent rats and its effect on neurodegeneration. World Neurosurg. 2018;120:e1193-e1202. https://doi.org/101016/j.wneu.2018.09.037
23.   Erickson KI, Weinstein AM, Sutton BP, Prakash RS, Voss MW, Chaddock L, et al. Beyond vascularization: aerobic fitness is associated with N‐acetylaspartate and working memory. Brain and Behavior. 2012;2(1):32-41. https://doi.org/10.1002/brb3.30/
24. Wright J, Saneto R, Friedman S. β-Hydroxybutyrate detection with proton MR spectroscopy in children with drug-resistant epilepsy on the ketogenic diet. American Journal of Neuroradiology. 2018;39(7):1336-40.
25. Gonzales MM, Tarumi T, Kaur S, Nualnim N, Fallow BA, Pyron M, et al. Aerobic fitness and the brain: increased N-acetyl-aspartate and choline concentrations in endurance-trained middle-aged adults. Brain Topography. 2013;26:126-34. https://doi.org/10.1007/s10548-012-0248-8/
26. Maddock RJ, Buonocore MH. MR spectroscopic studies of the brain in psychiatric disorders. Brain Imaging in Behavioral Neuroscience. 2012:199-251. https://doi.org/10.1007/7854_2011_197/
27. Sporn L, MacMillan EL, Ge R, Greenway K, Vila‐Rodriguez F, Laule C. Longer repetition time proton MR spectroscopy shows increasing hippocampal and parahippocampal metabolite concentrations with aging. Journal of Neuroimaging. 2019;29(5):592-7. https://doi.org/10.1111/jon.12648/
28. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife. 2016;5:e15092. https://doi.org/10.7554/eLife.15092/
29. Rae CD. A guide to the metabolic pathways and function of metabolites observed in human brain 1 H magnetic resonance spectra. Neurochemical Research. 2014;39:1-36. https://doi.org/10.1007/s11064-013-1199-5/
30. Cleeland C, Pipingas A, Scholey A, White D. Neurochemical changes in the aging brain: a systematic review. Neuroscience & Biobehavioral Reviews. 2019;98:306-19. https://doi.org/10.1016/j.neubiorev.2019.01.003/
31. Yin J, Han P, Tang Z, Liu Q, Shi J. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke. Journal of Cerebral Blood Flow & Metabolism. 2015;35(11):1783-9. https://doi.org/10.1038/jcbfm.2015.123/
32. Ding X-Q, Maudsley AA, Schweiger U, Schmitz B, Lichtinghagen R, Bleich S, et al. Effects of a 72 hours fasting on brain metabolism in healthy women studied in vivo with magnetic resonance spectroscopic imaging. Journal of Cerebral Blood Flow & Metabolism. 2018;38(3):469-78. https://doi.org/10.1177/0271678X17697721/
33. Göschel L, Fillmer A, Dell'Orco A, Melin J, Aydin S, Kurz L, et al. Associations between the glial marker myo‐inositol measured by 7T MRS and other AD‐relevant measures. Alzheimer's & Dementia. 2022;18:e069340. https://doi.org/10.1002/alz.069340/
34. Warepam M, Mishra AK, Sharma GS, Kumari K, Krishna S, Khan MSA, et al. Brain metabolite, N-acetylaspartate is a potent protein aggregation inhibitor. Frontiers in Cellular Neuroscience. 2021;15:617308. https://doi.org/10.3389/fncel.2021.617308/
35. Zhu H, Bi D, Zhang Y, Kong C, Du J, Wu X, et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduction and Targeted Therapy. 2022;7(1):11. https://doi.org/10.1038/s41392-021-00831-w/
36. Mutoh T, Kunitoki K, Tatewaki Y, Yamamoto S, Thyreau B, Matsudaira I, et al. Impact of medium-chain triglycerides on gait performance and brain metabolic network in healthy older adults: a double-blind, randomized controlled study. GeroScience. 2022;44(3):1325-38. https://doi.org/10.1007/s11357-022-00553-z/
37. Rojas-Morales P, Pedraza-Chaverri J, Tapia E. Ketone bodies, stress response, and redox homeostasis. Redox Biology. 2020;29:101395.
دوره 17، شماره 68
زمستان 1404
صفحه 17-34

  • تاریخ دریافت 28 مرداد 1404
  • تاریخ بازنگری 05 آذر 1404
  • تاریخ پذیرش 14 آذر 1404