نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه شهید مدنی آذربایجان

2 استادیار فیزیولوژی ورزشی، پژوهشکده طب ورزشی، پژوهشگاه تربیت بدنی و علوم ورزشی، تهران، ایران

چکیده

هدف این تحقیق بررسی سازگاری های سوخت و سازی، هورمونی و نروتروفینی به تمرین هوازی در مردان میانسال دارای سندرم متابولیک بود. 30 مرد چاق میان سال دارای تعداد بالای شاخص‌های خطر متابولیک (سن: 3/5±2/58 سال، وزن: 3/8±0/95 کیلوگرم، قد: 0/7±0/173 سانتی‌متر، شاخص‌توده‌بدن: 5/1±5/31 کیلوگرم‌بر‌مترمربع و اوج‌اکسیژن‌مصرفی: 2/4±0/20 میلی‌لیتر بر کیلوگرم در دقیقه) به طور تصادفی به دو گروه ورزش و کنترل تقسیم شدند و در زمان های قبل و بعد از انجام هشت هفته تمرین هوازی با شدت متوسط (سه جلسه در هفته با شدت 60 تا 50 درصد از اوج اکسیژن مصرفی) مورد بررسی قرار گرفتند. نمونه‌های خونی ناشتا و متغیرهای غذایی در هر دو مرحله ثبت شدند. از آزمون‌های تی‌مستقل، ضریب‌همبستگی‌پیرسون، رگرسیون‌مرحله‌ای و تحلیل‌واریانس‌اندازه گیری‌مکرر برای بررسی داده‌ها استفاده شد. تمرین ورزشی علاوه بر کاهش مقدار کل شاخص-های خطر متابولیک، امتیاز کل خطر متابولیک، وزن بدن و کورتیزول سرم، همچنین سبب افزایش حساسیت انسولینی، اوج اکسیژن مصرفی، عامل رشد عصب، عامل رشد عصبی مشتق شده از مغز، عامل رشدی شبه انسولین-1 و تستوسترون سرم شد (05/0>P). در طول تحقیق تفاوت معنی‌داری در مقدار پروتئین، قند، چربی و کل غذای مصرفی روزانه مشاهده نشد(05/0<P). دور کمر، عامل رشد عصب و وزن بدن به عنوان مهم‌ترین عوامل برآورد کننده نسبت تستوسترون به کورتیزول سرم شناسایی شدند (05/0>P). نتیجه‌گیری می‌شود که تمرین هوازی در وضعیت سندرم متابولیک پیشرفته علاوه بر بهبود وضعیت متابولیک و حساسیت انسولینی، سبب تغییر حالت سوخت و سازی بدن به سوی وضعیت آنابولیک می‌شود.

کلیدواژه‌ها

موضوعات

1) Grundy S M, Brewer H B, Cleeman J I, Smith S C, Lenfant C, Association A H, et al. Definition of metabolic syndrome: Report of the national heart, Lung, and blood institute. American Heart Association Conference on Scientific Issues Related to Definition. Circulation. 2004; 109. 433-8.
2) Anagnostis P, Athyros V G, Tziomalos K, Karagiannis A, Mikhailidis D P. The pathogenetic role of cortisol in the metabolic syndrome: A hypothesis. The Journal of Clinical Endocrinology & Metabolism. 2009; 94(8): 2692-701.
3) Hillman CH, Erickson K I, Kramer A F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience. 2008; 9(1): 58-65.
4) LeRoith D, Yakar S. Mechanisms of disease: Metabolic effects of growth hormone and insulin-like growth factor 1. Nature Clinical Practice Endocrinology & Metabolism. 2007; 3(3): 302-10.
5) Maggio M, Lauretani F, Ceda G P, Bandinelli S, Basaria S, Ble A, et al. Association between hormones and metabolic syndrome in older Italian men. Journal of the American Geriatrics Society. 2006; 54(12): 1832-8.
6) Yanev S, Aloe L, Fiore M, Chaldakov G N. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World Journal of pharmacology. 2013; 2(4): 92-9.
7) Lebrun B, Bariohay B, Moyse E, Jean A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: A minireview. Autonomic Neuroscience: Basic and Clinical. 2006; 30 126-127: 30-8.
8) Larrieta M E, Vital P, Mendoza-Rodríguez A, Cerbón M, Hiriart M. Nerve growth factor increases in pancreatic β cells after streptozotocin-induced damage in rats. Experimental Biology and Medicine. 2006; 231(4): 396-402.
9) Hristova M, Aloe L. Metabolic syndrome–neurotrophic hypothesis. Medical Hypotheses. 2006; 66(3): 545-9.
10) Chilibeck P D, Pérez-López F R, Bodary P F, Kang E S, Jeon J Y. Adipocytokines, metabolic syndrome, and exercise. International Journal of Endocrinology. 2014; 1: 1-3.
11) Damirchi A, Tehrani B S, Alamdari K A, Babaei P. Influence of aerobic training and detraining on serum BDNF, Insulin resistance, and metabolic risk factors in middle-aged men diagnosed with metabolic syndrome. Clinical Journal of Sport Medicine. 2014; 24(6): 513-8.
12) Aloe L, Alleva E, Fiore M. Stress and nerve growth factor: Findings in animal models and humans. Pharmacology Biochemistry and Behavior. 2002; 73(1): 159-66.
13) برزگر حامد، وسدی الهام، برجیان‌فرد محبوبه. تأثیر تمرین‌های متفاوت ورزشی بر مقادیر عامل نوروتروفیک مشتق از مغز موش‌های صحرایی. نشریۀ فیزیولوژی ورزشی. 1393؛ 24(6): 108ـ99.
14) فلاح‌محمدی ضیا، نظری حسین. تأثیر 4 هفته تمرین پلیومتریک بر غلظت سرمی فاکتور نروتروفیک مشتق از مغز مردان فعال. نشریۀ فیزیولوژی ورزشی. 1392؛ 20(5): 38ـ29.
15) Givalois L, Naert G, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L. A single brain-derived neurotrophic factor injection modifies hypothalamo–pituitary–adrenocortical axis activity in adult male rats. Molecular and Cellular Neuroscience. 2004; 27(3): 280-95.
16) Spark R F. Testosterone, diabetes mellitus, and the metabolic syndrome. Current Urology Reports. 2007; 8(6): 467-71.
17) Tsujimura A, Miyagawa Y, Takezawa K, Okuda H, Fukuhara S, Kiuchi H, et al. Is Low testosterone concentration a risk factor for metabolic syndrome in healthy middle-aged men? Urology. 2013; 82(4): 814-9.
18) Esteghamati‌ A, Ashraf H, Rashidi A, Meysamie A. Waist circumference cut-off points for the diagnosis of metabolic syndrome in Iranian adults. Diabetes Research and Clinical Practice. 2008; 82(1): 104-7.
19) Babaei P, Azalialamdari K, Soltani B, Damirchi A. Effect of six weeks of endurance exercise and following detraining on serum BDNF and memory performance in middle aged males with metabolic syndrome. J Sports Med Phys Fitness. 2013; 53(4): 437-43.
20) ابراهیمی محسن، رحمانی‌نیا فرهاد، دمیرچی ارسلان، میرزایی بهمن. اثر شدت فعالیت هوازی بر انرژی دریافتی، اشتها و هورمون‌های تنظیم‌کنندۀ انرژی در مردان جوان غیر‌فعال. نشریۀ فیزیولوژی ورزشی. 1392، 20(5): 28ـ15.
21) Grossmann M, Thomas M C, Panagiotopoulos S, Sharpe K, MacIsaac R J, Clarke S, et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. The Journal of Clinical Endocrinology & Metabolism. 2008; 93(5): 1834-40.
22) Kraemer W J, Ratamess N A. Hormonal responses and adaptations to resistance exercise and training. Sports Medicine. 2005; 35(4): 339-61.
23) Corazza D I, Sebastião É, Pedroso R V, Andreatto C A A, de Melo Coelho F G, Gobbi S, et al. Influence of chronic exercise on serum cortisol levels in older adults. European Review of Aging and Physical Activity. 2014; 11(1): 25-34.
24) Starkweather A R. The effects of exercise on perceived stress and IL-6 levels among older adults. Biological Research for Nursing. 2007; 8(3): 186-94.
25) Vale R G d S, de Oliveira R D, Pernambuco C S, de Meneses Y Pd S F, Novaes J d S, de Andrade A d FD. Effects of muscle strength and aerobic training on basal serum levels of IGF-1 and cortisol in elderly women. Archives of Gerontology and Geriatrics. 2009; 49(3): 343-7.
26) Grossmann M, Gianatti E J, Zajac J D. Testosterone and type 2 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity. 2010; 17(3): 247-56.
27) Abraham S, Rubino D, Sinaii N, Ramsey S, Nieman L. Cortisol, obesity, and the metabolic syndrome: A cross‐sectional study of obese subjects and review of the literature. Obesity. 2013; 21(1): 105-17.
28) Travison T G, O'Donnell A B, Araujo A B, Matsumoto A M, McKinlay J B. Cortisol levels and measures of body composition in middle‐aged and older men. Clinical Endocrinology. 2007; 67(1): 71-7.
29) Grossmann M. Low testosterone in men with type 2 diabetes: Significance and treatment. The Journal of Clinical Endocrinology and Metabolism. 2011; 96(8): 2341.
30) Laaksonen D E, Niskanen L, Punnonen K, Nyyssonen K, Tuomainen T-P, Valkonen V-P, et al. The metabolic syndrome and smoking in relation to hypogonadism in middle-aged men: A prospective cohort study. The Journal of Clinical Endocrinology & Metabolism. 2005; 90(2): 712-9.
31) Haring R, Ittermann T, Völzke H, Krebs A, Zygmunt M, Felix SB, et al. Prevalence, incidence and risk factors of testosterone deficiency in a population-based cohort of men: Results from the study of health in Pomerania. The Aging Male. 2010; 13(4): 247-57.
32) Isidori A M, Caprio M, Strollo F, Moretti C, Frajese G, Isidori A, et al. Leptin and androgens in male obesity: Evidence for leptin contribution to reduced androgen levels 1. The Journal of Clinical Endocrinology & Metabolism. 1999; 84(10): 3673-80.
33) Sandeep S, Gokulakrishnan K, Velmurugan K, Deepa M, Mohan V. Visceral & subcutaneous abdominal fat in relation to insulin resistance & metabolic syndrome in non-diabetic south Indians. The Indian Journal of Medical Research. 2010; 131: 629-35
34) Karolkiewicz J, Michalak E, Pospieszna B, Deskur-Śmielecka E, Nowak A, Pilaczyńska-Szcześniak Ł. Response of oxidative stress markers and antioxidant parameters to an 8-week aerobic physical activity program in healthy, postmenopausal women. Archives of Gerontology and Geriatrics. 2009; 49(1): 67-71.
35) Akanji A, Smith R. The insulin-like growth factor system, metabolic syndrome, and cardiovascular disease risk. Metabolic Syndrome and Related Disorders. 2012; 10(1): 3.
36) Pouliot M C, Després J P, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. The American Journal of Cardiology. 1994; 73(7): 460-8.
37) Gatti R, De Palo E, Antonelli G, Spinella P. IGF-I/IGFBP system: Metabolism outline and physical exercise. Journal of Endocrinological Investigation. 2012; 35(7): 699-707.
38) Rarick K R, Pikosky M A, Grediagin A, Smith T J, Glickman E L, Alemany J A, et al. Energy flux, more so than energy balance, protein intake, or fitness level, influences insulin-like growth factor-I system responses during 7 days of increased physical activity. Journal of Applied Physiology. 2007; 103(5): 1613-21.
39) Gómez J M, Maravall F J, Gómez N, Navarro M A, Casamitjana R, Soler J. Interactions between serum leptin, the Insulin‐like growth factor‐I system, and sex, age, anthropometric and body composition variables in a healthy population randomly selected. Clinical Endocrinology. 2003; 58(2): 213-9.
40) Ciaraldi T P, Carter L, Rehman N, Mohideen P, Mudaliar S, Henry R R. Insulin and insulin-like growth factor-1 action on human skeletal muscle: Preferential effects of insulin-like growth factor-1 in type 2 diabetic subjects. Metabolism. 2002; 51(9): 1171-9.
41) Oliveira C, Meneguz-Moreno R, Aguiar-Oliveira M, Barreto-Filho J. Emerging role of the GH/IGF-I on cardiometabolic control. Arquivos Brasileiros de Cardiologia. 2011; 97(5): 434.
42) Lee I T, Fu C P, Lee W J, Liang K W, Lin S Y, Wan C J, et al. Brain-derived neurotrophic factor, but not body weight, correlated with a reduction in depression scale scores in men with metabolic syndrome: A prospective weight-reduction study. Diabetology & Metabolic Syndrome. 2014; 6(1): 1-7.
43) Swift D L, Johannsen N M, Myers V H, Earnest C P, Smits J A, Blair S N, et al. The effect of exercise training modality on serum brain derived neurotrophic factor levels in individuals with type 2 diabetes. PloS One. 2012; 7(8): 42785.
44) Bulló M, Peeraully M R, Trayhurn P, Folch J, Salas-Salvadó J. Circulating nerve growth factor levels in relation to obesity and the metabolic syndrome in women. European Journal of Endocrinology. 2007; 157(3): 303-10.
45) Terry Jr A V, Kutiyanawalla A, Pillai A. Age-dependent alterations in nerve growth factor (NGF)-related proteins, sortilin, and learning and memory in rats. Physiology & Behavior. 2011; 102(2): 149-57.
46) Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging. 2005; 26(1): 115-23.
47) Neeper S A, Gómez-Pinilla F, Choi J, Cotman C W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research. 1996; 726(1): 49-56.
48) Rasmussen P, Brassard P, Adser H, Pedersen M, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology. 2009; 94(10): 1062.
49) Knaepen K, Goekint M, Heyman E M, Meeusen R. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Medicine. 2010; 40(9): 765-801.