نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار فیزیولوژی ورزشی، پژوهشکده طب ورزشی، پژوهشگاه تربیت بدنی و علوم ورزشی، تهران، ایران

2 دانشجوی دکتری فیزیولوژی ورزشی، دانشگاه گیلان، رشت، ایران

3 دانشجوی دکتری فیزیولوژی ورزشی، دانشگاه فردوسی/ کارشناس آزمایشگاه علوم ورزشی، پژوهشگاه تربیت بدنی و علوم ورزشی

4 پژوهشگر پژوهشگاه تربیت بدنی و علوم ورزشی، تهران، ایران

چکیده

هدفازپژوهشحاضر، مقایسۀ حداکثر اکسیداسیون چربی و شدتی از فعالیت ورزشی که حداکثر اکسیداسیون چربی در آن اتفاق می­افتد (Fatmax)، در زنان تمرین­کرده و تمرین­نکرده بود. 10 زن سالم تمرین­نکرده (با سطح فعالیت ورزشی کمتر از سه ساعت در هفته و میانگین حداکثر اکسیژن مصرفی 34/0±66/2 لیتر در دقیقه) و 10 زن سالم تمرین­کرده (از اعضای یک تیم بسکتبال باشگاهی با میانگین حداکثر اکسیژن مصرفی 29/0±83/2 لیتر در دقیقه) که به­صورت هدفمند انتخاب شدند، نمونه آماری این پژوهش را تشکیل دادند. آزمودنی­ها پس از10 تا 12 ساعت ناشتایی شبانه، آزمون ورزشی فزاینده­ای را روی چرخ کارسنج با مراحل سه دقیقه­ای تا سر­حد خستگی اجرا کردند. در طول آزمون گازهای تنفسی با استفاده از دستگاه گاز آنالایزر اندازه­گیری شد و میزان اکسیداسیون مواد، حداکثر اکسیداسیون چربی و Fatmaxمحاسبه گردید. همچنین، از آزمون آماری تحلیل واریانس با اندازه­گیری­های مکرر و تی مستقل به­منظور مقایسۀ متغیرها در سطح P<0.05 استفاده شد. نتایج نشان داد که میانگین حداکثر اکسیداسیون چربی و Fatmax در آزمودنی­های تمرین­کرده، به­طور معناداری بالاتر از مقدار آن در آزمودنی­های تمرین­نکرده می­باشد (P<0.05). همچنین، مقادیر اکسیداسیون چربی در شدت­های بالاتر از 55درصد VO2max در افراد تمرین­کرده، به­طور معناداری بالاتر از افراد تمرین­نکرده بود (P<0.05). به­طور­کلی، بالا­بودن سطح آمادگی جسمانی افراد تمرین­کرده سبب افزایش میزان اکسیداسیون چربی و کاهش اکسیداسیون کربوهیدرات در جریان فعالیت شده و شروع کاهش اکسیداسیون چربی در این افراد در شدت بالاتری اتفاق می‌افتد؛ بنابراین، دیرتر به منابع کربوهیدرات وابسته می‌شوند.

کلیدواژه‌ها

موضوعات

1) Achten J, Gleeson M, Jeukendrup A E. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002; 34(1): 92-7.
2) Lima-Silva A E, Bertuzzi R C, Pires F O, Gagliardi J F, Barros R V, Hammond J, et al. Relationship between training status and maximal fat oxidation rate. J Sports Sci Med. 2010; 9(1): 31.
3) Brandou F, Savy-Pacaux A M, Marie J, Brun J F, Mercier J. Comparison of the type of substrate oxidation during exercise between pre and post pubertal markedly obese boys. Int J Sports Med. 2006; 27(5): 407-14.
4) Ashley C D, Kramer M L, Bishop P. Estrogen and substrate metabolism: A review of contradictory research. Sports Med. 2000; 29(4): 221-7.
5) Blaak E E, Van Baak M A, Kemerink G J, Pakbiers M T, Heidendal G A, Saris W H. Beta-adrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am J Physiol. 1994; 267(2 Pt 1): ­306-15.
6) Bogdanis G C, Vangelakoudi A, Maridaki M. Peak fat oxidation rate during walking in sedentary overweight men and women. J Sports Sci Med. 2008; 7(4): 525-31.
7) Gray S C, Devito G, Nimmo M A. Effect of active warm-up on metabolism prior to and during intense dynamic exercise. Med Sci Sports Exerc. 2002; 34(12): 2091-6.
8) Romijn J A, Coyle E F, Sidossis L S, Rosenblatt J, Wolfe R R. Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol. 2000; 88(5): 1707-14.
9) Stephens B R, Cole A S, Mahon A D. The influence of biological maturation on fat and carbohydrate metabolism during exercise in males. Int J Sport Nutr Exerc Metab. 2006; 16(2): 166-79.
10) Riddell M C, Jamnik V K, Iscoe K E, Timmons B W, Gledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol. 2008; 105(2): 742-8.
11) Zunquin G, Theunynck D, Sesboue B, Arhan P, Bougle D. Comparison of fat oxidation during exercise in lean and obese pubertal boys: Clinical implications. Br J Sports Med. 2009; 43(11): 869-70.
12) Brandou F, Savy-Pacaux A M, Marie J, Bauloz M, Maret-Fleuret I, Borrocoso S, et al. Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet. Diabetes Metab. 2005; 31(4 Pt 1): 327-35.
13) Lazzer S, Busti C, Agosti F, De Col A, Pozzo R, Sartorio A. Optimizing fat oxidation through exercise in severely obese Caucasian adolescents. Clin Endocrinol (Oxf). 2007; 67(4): 582-8.
14) محبی حمید، دمیرچی ارسلان، روحانی هادی، شادمهری سعیده. مقایسۀ حداکثر اکسیداسیون چربی (MFO)در دانشجویان زن و مرد غیرورزشکار. نشریۀ المپیک. 1389؛ 43: 2ـ50.
15) Nordby P, Saltin B, Helge J W. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: A role for muscle oxidative capacity? Scand J Med Sci Sports. 2006; 16(3): 209-14.
16) Stisen A B, Stougaard O, Langfort J, Helge J W, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 2006; 98(5): 497-506.
17) Achten J, Jeukendrup A E. Maximal fat oxidation during exercise in trained men. Int J Sports Med. 2003; 24(8): 603-8.
18) Morgan D W, Baldini F D, Martin P E, Kohrt W M. Ten kilometer performance and predicted velocity at VO2max among well-trained male runners. Med Sci Sports Exerc. 1989; 21(1): 78-83.
19) Noakes T D, Myburgh K H, Schall R. Peak treadmill running velocity during the VO2 max test predicts running performance. J Sports Sci. 1990; 8(1): 35-45.
20) Bordenave S, Flavier S, Fedou C, Brun J F, Mercier J. Exercise calorimetry in sedentary patients: Procedures based on short 3 min steps underestimate carbohydrate oxidation and overestimate lipid oxidation. Diabetes Metab. 2007; 33(5): 379-84.
21) Cheneviere X, Malatesta D, Peters E M, Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc. 2009; 41(8): 1615-25.
22) Jeukendrup A E, Wallis G A. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005; 26­(Suppl 1): ­28-37.
23) Bergman B C, Brooks G A. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol. 1999; 86(2): 479-87.
24) Romijn J A, Coyle E F, Sidossis L S, Gastaldelli A, Horowitz J F, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993; 265(3 Pt 1): 380-91.
25) Melzer K, Schutz Y, Kayser B. Normalization of basal metabolic rate for differences in body weight in pregnant women. Eur J Obstet Gynecol Reprod Biol. 2011; 159(2): 480-1.
26) ابراهیمی محسن، رحمانی­نیا فرهاد، دمیرچی ارسلان. اثر شدت فعالیت هوازی بر انرژی دریافتی، اشتها و هورمون‌های تنظیم­کنندۀ انرژی در مردان جوان غیر­فعال. نشریۀ فیزیولوژی ورزشی. 1392؛ 5(20): 28ـ15.
27) Goldberg L, Elliot D L. The effect of exercise on lipid metabolism in men and women. Sports Med. 1987; 4(5): 307-21.
28) Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol. 1987; 62(3): 999-1005.
29) Martin W H, Dalsky G P, Hurley B F, Matthews D E, Bier D M, Hagberg J M, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol. 1993; 265(5 Pt 1): 708-14.
30) Poehlman E T, Gardner A W, Arciero P J, Goran M I, Calles-Escandon J. Effects of endurance training on total fat oxidation in elderly persons. J Appl Physiol. 1994; 76(6): 2281-7.
31) Bonen A, Chabowski A, Luiken J J, Glatz J F. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: Molecular, biochemical, and physiological evidence. Physiology (Bethesda). 2007; 22: 15-29.
32) Odland L M, Howlett R A, Heigenhauser G J, Hultman E, Spriet L L. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. Am J Physiol. 1998; 274(6 Pt 1): 1080-5.
33) Jeukendrup A E. Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem Soc Trans. 2003; 31(Pt 6): 1270-3.
34) صفری موسوی سیدصالح، محبی حمید، دمیرچی ارسلان، هوانلو فریبرز. اثر کاهش محتوای گلیکوژن عضله بر MFO و Fatmax هنگام فعالیت ورزشی در مردان تمرین­نکرده. نشریۀ سوخت­و­ساز و فعالیت ورزشی. 1391؛ 2(2): 113ـ23.
35) Achten J, Jeukendrup A E. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation. J Sports Sci. 2003; 21(12): 1017-24.
36) Mohebbi H, Azizi M. Maximal fat oxidation at the different exercise intensity in obese and normal weight men in the morning and evening. J Hum Sport Exer. 2011; 6(1): 49-58.
37) Achten J, Venables M C, Jeukendrup A E. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metabolism. 2003; 52(6): 747-52.
38) Croci I, Borrani F, Byrne N M, Wood R E, Hickman I J, Cheneviere X, et al. Reproducibility of fatmax and fat oxidation rates during exercise in recreationally trained males. PLoS One. 2014; 9(6): 97930.
39) Rami M, Habibi A, Shakerian S. Comparison between fat max and maximal fat oxidation in active and sedentary males. Jentashapir J Health Res. 2014; 5(2): 53-64.
40) Venables M C, Jeukendrup A E. Endurance training and obesity: Effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008; 40(3):     495-502.
41) روحانی هادی، دمیر‌چی ارسلان، حسن‌نیا صادق، روحانی زهرا. مقایسۀ میزان اکسایش چربی در دامنۀ شدت­های فعالیت دویدن دانشجویان پسر غیرورزشکار. نشریۀ المپیک. 1388؛ 121: 45ـ30.