نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، گروه علوم ورزشی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 دانشیار فیزیولوژی ورزشی، گروه علوم ورزشی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

3 استادیار فیزیولوژی ورزشی، گروه علوم ورزشی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

4 استادیار فیزیولوژی ورزشی، گروه علوم ورزشی، دانشکدۀ علوم اجتماعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

چاقی بیوژنز میتوکندری عضلات را تضعیف می‌کند و در مورد تاثیر HIIT و Q10 بر آن نیاز به بررسی وجود دارد. هدف پژوهش بررسی اثر توام تمرین HIIT و مکمل Q10 بر دو شاخص بیوژنز میتوکندری در عضله نعلی موش‌های نر چاق بود. 48 موش صحرائی نر 16 هفته-ای]وزن گروه‌های چاق 272 تا372 گرم(36/22±8/308گرم)؛ وزن گروه وزن معمولی 140تا197 گرم (21/226/158گرم)[،به شش گروه شامل وزن معمولی، چاق مرجع، چاق کنترل، چاق HIIT، چاق Q10 و چاق توام تقسیم شدند. چاقی با رژیم پرچرب القا شد. مصرف Q10 روزانه به مقدار mg/kg.bw 500 و تمرین HIIT (10 وهله‌ فعالیت4 دقیقه‌ای با شدت 90-85 درصد v VO2 peak با 2 دقیقه‌ استراحت) به مدت12 هفته انجام شدند. متغیرها به روش وسترن بلات و اسپکتروفتومتری اندازه‌گیری شدند و داده‌ها با تحلیل واریانس یک‌راهه مقایسه شدند. در گروه‌‌های چاق مرجع و کنترل، مقدار پروتئین PGC-1α عضله نعلی کمتر از گروه وزن معمولی(به ترتیب P=0.001 و P=0.003) و در عوض فعالیت آنزیم سیترات سنتاز بیشتر بود (به ترتیبP=0.039وP=0.031).HIIT (0.001=P)، Q10 (0.001=P) و اثر توام(0.001=P) مقدار PGC-1α را از گروه وزن معمولی(نیز فراتر بردند که از این لحاظ اثر HIIT بیشتر از Q10 بود(0.017=P). اما هیچ یک از مداخلات، فعالیت CS را تغییر ندادند(P>0.05). می‌توان گفت چاقی بیوژنز میتوکندری عضله را تضعیف می‌کند و HIIT به‌طور مناسبی سبب جبران این وضعیت و حتی ارتقای آن نسبت به موش‌های وزن معمولی می‌شود. مکمل Q10 نیز دارای اثرات مفید اما ضعیف‌تر از HIIT است. با این‌حال، به دلیل کمبود شواهد و محدودیت‌ها هنوز نیاز به بررسی‌ باقی است.

کلیدواژه‌ها

موضوعات

  1. Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE. Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity.  J Appl Physiol (1985). 2007 Jul;103(1):21-7. 2007;103(1):21-7.
  2. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012; 590(14):3349-60.
  3. Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):465-72.
  4. Bishop D, Botella J, Genders A, Lee M, Saner N, Kuang J, et al. High-intensity exercise and mitochondrial biogenesis: current controversies and future research directions. Physiology (Bethesda, Md). 2019;34(1):56-70.
  5. Ebadi B, Damirchi A, Alamdari KA, Darbandi-Azar A, Naderi N. Cardiomyocyte mitochondrial dynamics in health and disease and the role of exercise training: A brief review. Research in Cardiovascular Medicine. 2018;7(3):107-115.
  6. Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, et al. PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol. 2010;298(3):C572-C9.
  7. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010; 47:69-84.
  8. Granata C, Jamnick NA, Bishop DJ. Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med. 2018;48(7):1541-59.
  9. Azali Alamdari K, Khalafi M. The effects of high intensity interval training on serum levels of fgf21 and insulin resistance in obese men. Iranian Journal of Diabetes and Metabolism. 2019;18(1):41-8.
  10. Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab. 2007;92(4):1467-73.
  11. Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, et al. TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest. 2006;116(10):2791-8.
  12. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin M-A, Morio B, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118(2):789-800.
  13. Hancock CR, Han D-H, Chen M, Terada S, Yasuda T, Wright DC, et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A. 2008;105(22):7815-20.
  14. Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE. Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol. 2007;103(1):21-7.
  15. Liang H, Ward WF. PGC-1α: a key regulator of energy metabolism. Advances in Physiology Education. 2006;30(4):145-51.
  16. Chis B, Chis A, Muresan A, Fodor D. Q10 Coenzyme Supplementation can Improve Oxidative Stress Response to Exercise in Metabolic Syndrome in Rats. Int J Vitam Nutr Res. 2020; 90(1-2):33-41.
  17. Rodrigues B, Figueroa DM, Mostarda CT, Heeren MV, Irigoyen M-C, De Angelis KJCd. Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats. Cardiovasc Diabetol. 2007; 6:38: 1-7.  
  18. Hafstad AD, Lund J, Hadler-Olsen E, Höper AC, Larsen TS, Aasum E. High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes. 2013;62(7):2287-94.
  19. Siu PM, Donley DA, Bryner RW, Alway SE. Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles. J Appl Physiol. 2003;94(2):555-60.
  20. Islam H, Edgett BA, Gurd BJ. Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: a re-evaluation. Metabolism. 2018; 79: 42-51.
  21. Granata C, Jamnick NA, Bishop DJ. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med. 2018;48(8):1809-28.
  22. Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC‐1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2016;30(2):959-70.
  23. Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta Gen Subj. 2014;1840(4):1266-75.
  24. Bakhtiyari A, Gaeni A, Chobineh S, Kordi MR, Hedayati M. Effect of 12-weeks high-intensity interval training on SIRT1, PGC-1α and ERRα protein expression in aged rats. Journal of Applied Health Studies in Sport Physiology. 2018;5(2):95-102.
  25. Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588(23):4795-810.
  26. Niklas P, Li W, Jens W, Michail T, Kent S. Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise. Eur J Appl Physiol. 2010;110(3):597-606.
  27. Boushel R, Gnaiger E, Calbet JA, Gonzalez-Alonso J, Wright-Paradis C, Sondergaard H, et al. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion. 2011;11(2):303-7.
  28. Jacobs RA, Siebenmann C, Hug M, Toigo M, Meinild AK, Lundby C. Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. FASEB J. 2012;26(12):5192-200.
  29. Jain SS, Paglialunga S, Vigna C, Ludzki A, Herbst EA, Lally JS, et al. High-fat diet–induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes. 2014;63(6):1907-13.
  30. Boyd JC, Simpson CA, Jung ME, Gurd BJJPO. Reducing the Intensity and Volume of Interval Training Diminishes Cardiovascular Adaptation but Not Mitochondrial Biogenesis in Overweight/Obese Men. PloS One. 2013;8(7):
  31. Jacobs RA, Flück D, Bonne TC, Bürgi S, Christensen PM, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol. 2013;115(6):785-93.
  32. Prieur F, Mucci P. Effect of high-intensity interval training on the profile of muscle deoxygenation heterogeneity during incremental exercise. Eur J Appl Physiol. 2013;113(1):249-57.
  33. He J, Goodpaster BH, Kelley DE. Effects of weight loss and physical activity on muscle lipid content and droplet size. Obes Res. 2004;12(5):761-9.

 

  1. Holloway GP, Benton CR, Mullen KL, Yoshida Y, Snook LA, Han X-X, et al. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab. 2009;296(4):E738-E47.
  2. Pham T, MacRae CL, Broome SC, D'souza RF, Narang R, Wang HW, et al. MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle‑aged men. Eur J Appl Physiol. 2020; 120(7):1657-1669.
  3. Ramos-Filho D, Chicaybam G, de-Souza-Ferreira E, Guerra Martinez C, Kurtenbach E, Casimiro-Lopes G, et al. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles. Plos One. 2015;10(6): e0131766.
  4. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12(4):925: 1-15.
  5. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44: 1-11.