پارادوکس ورزشکاران استقامتی: ارتباط بین تجمع چربی بافت عضلانی و حساسیت انسولین در ورزشکاران استقامتی و افراد چاق

نوع مقاله : مقاله مروری

نویسندگان

1 استاد فیزیولوژی ورزشی، دانشکده تربیت‌بدنی و علوم ورزشی، دانشگاه گیلان، رشت، ایران

2 دکتری تخصصی فیزیولوژی ورزشی، دانشکده تربیت‌بدنی و علوم ورزشی، دانشگاه گیلان، رشت، ایران

چکیده
تجمع چربی سبب می­شود چربی در بافت­هایی به‌جز بافت ذخیره چربی (ادیپوز) مانند عضله نیز انباشت  شود. در سلول­های عضلانی چربی به صورت قطرات چربی ذخیره می­شود. در سلول­های عضلانی قطرات چربی این توانایی را دارند که چربی را به شکل مطمئن ذخیره کنند، اما این ظرفیت دارای محدودیت است؛ به‌گونه‌ای‌که افزایش بیش از اندازه ذخیره چربی ممکن است به اختلال در عملکرد طبیعی سلول منجر شود. با افزایش وزن و چاقی میزان محتوای چربی درون سلول­های عضلانی افزایش می­یابد و این  موضوع با مقاومت به انسولین ارتباط مستقیم دارد، اما این پدیده در ورزشکاران استقامتی متفاوت است؛ به‌گونه‌ای‌که به­رغم افزایش محتوای چربی درون‌عضلانی، افزایش حساسیت به انسولین مشاهده می­شود. احتمالاً محل ذخیره چربی، محتوای چربی و ترکیب قطرات چربی، همراه باوجود لیپیدهای بیواکتیو ممکن است بین ورزشکاران و افراد چاق و احتمالا دارای دیابت نوع دو متفاوت باشد. پروتئین‌هایی که سطح قطرات لیپید را می­پوشانند، احتمالاً بر سیگنال دهی و متابولیسم آن‌ها تأثیر می­گذارند. این پروتئین­ها همچنین به تعامل بین قطرات لیپید و سایر اجزای سلولی و همچنین موقعیت آن‌ها کمک می­کنند. این مقاله با مرور تحقیقات قبلی درمورد ارتباط بین قطرات چربی در عضلات اسکلتی و اختلالات متابولیک، نقش پروتئین‌ها را در تنظیم متابولیسم و اثرات فعالیت بدنی بر این اندامک‌ها و تفاوت در تجمع چربی در بافت عضلانی بین ورزشکاران و افراد چاق یا دارای دیابت نوع 2 بررسی می‌کند.

کلیدواژه‌ها

موضوعات


  1. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12(4):925.
  2. Mohebbi H, Rohani H, Hassan-Nia S. The effect of 12 weeks endurance training at 2 different intensities on GLUT4 mRNA expression of soleus and gastrocnemius muscles in obese mice. Apunts Medicina de l'Esport. 2016;51(191):93-9.
  3. Saidie P, Mohebbi H, Rahmani Nia F, Mohammad Ghasemi F. Effect of unsaturated-high-fat-diet and aerobic training program on serum levels of adiponectin isoforms, insulin resistance and lipid profile in male obese rats. Journal of Sport Biosciences. 2018;10(1):103-18. (Persian)
  4. Safarimosavi S, Mohebbi H, Rohani H. High-intensity interval vs. continuous endurance training: Preventive effects on hormonal changes and physiological adaptations in prediabetes patients. The Journal of Strength & Conditioning Research. 2021;35(3):731-8.
  5. Gastaldelli A, Miyazaki Y, Pettiti M, Matsuda M, Mahankali S, Santini E, et al. Metabolic effects of visceral fat accumulation in type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism. 2002;87(11):5098-103.
  6. Rohani h, safarimosavi s, Mohebbi H. The comparison of 12 weeks continuous training at fatmax and anaerobic threshold intensities and high intensity interval training on antioxidant enzymes and lipid peroxidation index in pre-diabetic patients. Med J Tabriz Uni Med Sciences Health Services. 2020;42(2):168-76. (Persian)
  7. Hoseeini M, Mohebbi H, Ghafoori H, Rezadoost MH. The effect of aerobic training in hypoxia and normoxia conditions on the signaling pathway of lipogenesis and lipolysis in the liver of male rats fed a high-fat diet. Journal of Practical Studies of Biosciences in Sport. 2024;12(30):8-26. (Persian)
  8. Bonen A, Chabowski A, Luiken JJP, Glatz JF. Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology. 2007;1-14..
  9. Mohebbi H, Rohani H, Hassan-nia S, Pirooznia N. The effect of obesity and endurance training-induced weight loss on UCP3 mRNA expression in C57BL/6 mice. Iranian Journal of Endocrinology and Metabolism. 2013;15(3):311-21. (Persian)
  10. Mohebbi H, Azizi M. Maximal fat oxidation at the different exercise intensity in obese and normal weight men in the morning and evening. Journal of Human Sport and Exercise. 2011;6(1):49-58.
  11. Hosseini SM, Mohebbi H, Ghafoori, Hossein, Rezadoost, Mohammad Hosseine. The effect of hypoxia and normoxia training on autophagy in male rats hepatocytes with a high-fat diet. Journal of Applied Health Studies in Sport Physiology. 2024;11(1):39-52. (Persian)
  12. Henne M. And three’sa party: lysosomes, lipid droplets, and the ER in lipid trafficking and cell homeostasis. Current opinion in cell biology. 2019;59:40-9.
  13. Nguyen TB, Olzmann JA. Getting a handle on lipid droplets: Insights into ER–lipid droplet tethering. Journal of Cell Biology. 2019;218(4):1089-91.
  14. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. The Journal of Clinical Endocrinology & Metabolism. 2001;86(12):5755-61.
  15. Blaak E. Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus. Proceedings of the Nutrition Society. 2004;63(2):323-30.
  16. Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiological Reviews. 2006;86(1):205-43.
  17. Jorbonian A, Mohebbi H. Effects of aerobic training and caloric restriction on intramuscular lipid, lipid profile and insulin resistance after 18 weeks high fat diet in male rat. Journal of Applied Exercise Physiology. 2018;14(27):237-48. (Persian)
  18. Gemmink A, Daemen S, Brouwers B, Huntjens PR, Schaart G, Moonen-Kornips E, et al. Dissociation of intramyocellular lipid storage and insulin resistance in trained athletes and type 2 diabetes patients; involvement of perilipin 5? J Physiol. 2018;596(5):857-68.
  19. Coen PM, Dubé JJ, Amati F, Stefanovic-Racic M, Ferrell RE, Toledo FG, Goodpaster BH. Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes. 2010;59(1):80-8.
  20. Coderch L, López O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol. 2003;4(2):107-29.
  21. Skovbro M, Baranowski M, Skov-Jensen C, Flint A, Dela F, Gorski J, Helge JW. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia. 2008;51(7):1253-60.
  22. Van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA. Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. American Journal of Physiology-Endocrinology and Metabolism. 2004;287(3):E558-E65.
  23. He J, Goodpaster BH, Kelley DE. Effects of weight loss and physical activity on muscle lipid content and droplet size. Obesity Research. 2004;12(5):761-9.
  24. Gemmink A, Goodpaster BH, Schrauwen P, Hesselink MK. Intramyocellular lipid droplets and insulin sensitivity, the human perspective. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2017;1862(10):1242-9.
  25. Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. American Journal of Physiology-Endocrinology and Metabolism. 2008;294(5):E882-E8.
  26. Henriksen EJ, Bourey RE, Rodnick KJ, Koranyi L, Permutt MA, Holloszy JO. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. American Journal of Physiology-Endocrinology and Metabolism. 1990;259(4):E593-E8.
  27. Nielsen J, Mogensen M, Vind BF, Sahlin K, Højlund K, Schrøder HD, Ørtenblad N. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2010;298(3):E706-E13.
  28. Daemen S, Gemmink A, Brouwers B, Meex RC, Huntjens PR, Schaart G, et al. Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete's paradox. Molecular Metabolism. 2018;17:71-81.
  29. Bajpeyi S, Reed MA, Molskness S, Newton C, Tanner CJ, McCartney JS, Houmard JA. Effect of short-term exercise training on intramyocellular lipid content. Applied Physiology, Nutrition, and Metabolism. 2012;37(5):822-8.
  30. Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis. 2020;19(1):113.
  31. Amati F, Dubé JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM, et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes. 2011;60(10):2588-97.
  32. Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling. Cellular and Molecular Life Sciences. 2015;72:3931-52.
  33. Jayasinghe SU, Tankeu AT, Amati F. Reassessing the role of diacylglycerols in insulin resistance. Trends in Endocrinology & Metabolism. 2019;30(9):618-35.
  34. Perreault L, Newsom SA, Strauss A, Kerege A, Kahn DE, Harrison KA, et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI insight. 2018;3(3).
  35. Malenfant P, Tremblay A, Doucet É, Imbeault P, Simoneau J-A, Joanisse DR. Elevated intramyocellular lipid concentration in obese subjects is not reduced after diet and exercise training. American Journal of Physiology-Endocrinology and Metabolism. 2001;280(4):E632-E9.
  36. Kelley DE, Goodpaster B, Wing RR, Simoneau J-A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. American Journal of Physiology-Endocrinology and Metabolism. 1999;277(6):E1130-E41.
  37. Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clinical Nutrition. 2004;23(4):447-56.
  38. Mohebbi H, Safari Mosavi SS, Rohani H. The Effect of 12 Weeks Continuous Training at Fatmax Intensity or Anaerobic Threshold, and High Intensity Interval Training on Fat Burning Capacity in Pre-Diabetic Patients. Sport Physiology. 2019;11(41):31-46. (Persian)
  39. Hosseini SM, Mohebbi H. The effect of different exercise intensities in hypoxia and normoxia conditions on liver fat content, blood cells, and endurance performance of male rats under high-fat diet. Sport Physiology. 2024;16(61):65-86. (Persian)
  40. Boyle KE, Zheng D, Anderson EJ, Neufer PD, Houmard JA. Mitochondrial lipid oxidation is impaired in cultured myotubes from obese humans. International Journal of Obesity. 2012;36(8):1025-31.
  41. Tabari E, Mohebbi H, Karimi P, Moghaddami K, Khalafi M. The effects of interval training intensity on skeletal muscle pgc-1Α in type2 diabetic male rats. Iranian Journal of Diabetes and Lipid Disorders. 2019;18(4):179-88. (Persian)
  42. Ghasemi F, Mohebbi H. The effect of high intensity interval training in normoxia and hypobaric hypoxia situation on the expression of genes involved in liver mitophagy in male Wistar rats fed with high fat diet. Journal of Applied Exercise Physiology. 2023;18(36):75-95. (Persian)
  43. Khalafi M, Mohebbi H, Karimi P, Faridnia M, Tabari E. The effect of high intensity interval training and moderate intensity continuous training on mitochondrial content and PGC-1α of subcutaneous adipose tissue in male rats with high fat diet induced obesity. Journal of Sport Biosciences. 2018;10(3):297-315. (Persian)
  44. Ghasemi F, Mohebbi H. The effect of High intensity interval training in normoxia and hypobaric hypoxia situation on liver mitochondrial biogenesis in male Wistar rats fed a high fat diet. Metabolism and Exercise. 2023;1.
  45. Tabari E, Mohebbi H. The effects of high and moderate intensity interval training on skeletal muscle of TFAM and NRF1 in type 2 diabetic male rats. Journal of Practical Studies of Biosciences in Sport. 2022;10(21):8-18. (Persian)
  46. Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PR, et al. Muscle fiber type is associated with obesity and weight loss. American Journal of Physiology-Endocrinology and Metabolism. 2002;282(6):E1191-E6.
  47. Schulze RJ, McNiven MA, editors. Lipid droplet formation and lipophagy in fatty liver disease. Seminars in liver disease. Thieme Medical Publishers; 2019.
  48. Qiu S, Xu H, Lin Z, Liu F, Tan F. The blockade of lipophagy pathway is necessary for docosahexaenoic acid to regulate lipid droplet turnover in hepatic stellate cells. Biomedicine & Pharmacotherapy. 2019;109:1841-50.
  49. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology. 2019;20(3):137-55.
  50. Sletten A, Seline A, Rudd A, Logsdon M, Listenberger LL. Surface features of the lipid droplet mediate perilipin 2 localization. Biochemical and Biophysical Research Communications. 2014;452(3):422-7.
  51. Li M, Paran C, Wolins NE, Horowitz JF. High muscle lipid content in obesity is not due to enhanced activation of key triglyceride esterification enzymes or the suppression of lipolytic proteins. American Journal of Physiology-Endocrinology and Metabolism. 2011;300(4):E699-E707.
  52. Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1221-32.
  53. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102-10.
  54. Kimmel AR, Sztalryd C. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr. 2016;36:471-509.
  55. Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology. 2008;47(6):1936-46.
  56. Moghaddami K, Mohebbi H, Tabari E, Faridnia M. A comparison of the effect of 12 weeks of interval training with high and moderate intensity on perilipin 3 of visceral adipose tissue and insulin resistance in type 2 diabetic male rats. Journal of Sport Biosciences. 2019;11(1):35-48. (Persian)
  57. Zhang E. Hepatic PLIN5 deficiency impairs lipogenesis through mitochondrial dysfunction. Int J Mol Sci. 2022;23(24).
  58. Morales PE, Bucarey JL, Espinosa A. Muscle lipid metabolism: role of lipid droplets and perilipins. Journal of Diabetes Research. 2017;2017:1789395.
  59. Tsai TH, Chen E, Li L, Saha P, Lee HJ, Huang LS, et al. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy. 2017;13(7):1130-44.
  60. Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA. Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab. 2012;37(4):724-35.
  61. McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS, Cain S, et al. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res. 2013;54(5):1346-59.
  62. Phillips SA, Choe CC, Ciaraldi TP, Greenberg AS, Kong AP, Baxi SC, et al. Adipocyte differentiation-related protein in human skeletal muscle: relationship to insulin sensitivity. Obes Res. 2005;13(8):1321-9.
  63. Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, et al. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes. 2012;61(11):2679-90.
  64. Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, van Loon LJ. Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2012;303(9):E1158-65.
  65. Shepherd SO, Cocks M, Meikle PJ, Mellett NA, Ranasinghe AM, Barker TA, et al. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. Int J Obes (Lond). 2017;41(12):1745-54.
  66. Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52(12):2159-68.
  67. Laurens C, Bourlier V, Mairal A, Louche K, Badin P-M, Mouisel E, et al. Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Scientific Reports. 2016;6(1):38310.
  68. Macpherson RE, Vandenboom R, Roy BD, Peters SJ. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physiol Rep. 2013;1(4):e00084.
  69. Louche K, Badin PM, Montastier E, Laurens C, Bourlier V, de Glisezinski I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab. 2013;98(12):4863-71.
  70. Gemmink A, Daemen S, Brouwers B, Hoeks J, Schaart G, Knoops K, et al. Decoration of myocellular lipid droplets with perilipins as a marker for in vivo lipid droplet dynamics: a super-resolution microscopy study in trained athletes and insulin resistant individuals. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(2):158852.
  71. Najt CP, Lwande JS, McIntosh AL, Senthivinayagam S, Gupta S, Kuhn LA, Atshaves BP. Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry. 2014;53(45):7051-66.
  72. Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH, et al. Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. J Biol Chem. 2006;281(45):34341-8.
  73. Díaz E, Pfeffer SR. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell. 1998;93(3):433-43.
  74. Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG, Rudolph MG, et al. TIP47 functions in the biogenesis of lipid droplets. J Cell Biol. 2009;185(4):641-55.
  75. Buers I, Robenek H, Lorkowski S, Nitschke Y, Severs NJ, Hofnagel O. TIP47, a lipid cargo protein involved in macrophage triglyceride metabolism. Arterioscler Thromb Vasc Biol. 2009;29(5):767-73.
  76. Covington JD, Noland RC, Hebert RC, Masinter BS, Smith SR, Rustan AC, et al. Perilipin 3 differentially regulates skeletal muscle lipid oxidation in active, sedentary, and type 2 diabetic males. J Clin Endocrinol Metab. 2015;100(10):3683-92.
  77. Whytock KL, Parry SA, Turner MC, Woods RM, James LJ, Ferguson RA, et al. A 7-day high-fat, high-calorie diet induces fibre-specific increases in intramuscular triglyceride and perilipin protein expression in human skeletal muscle. J Physiol. 2020;598(6):1151-67.
  78. Covington JD, Bajpeyi S, Moro C, Tchoukalova YD, Ebenezer PJ, Burk DH, et al. Potential effects of aerobic exercise on the expression of perilipin 3 in the adipose tissue of women with polycystic ovary syndrome: a pilot study. Eur J Endocrinol. 2015;172(1):47-58.
  79. Kleinert M, Parker BL, Chaudhuri R, Fazakerley DJ, Serup A, Thomas KC, et al. mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Mol Metab. 2016;5(8):646-55.
  80. Shepherd SO, Strauss JA, Wang Q, Dube JJ, Goodpaster B, Mashek DG, Chow LS. Training alters the distribution of perilipin proteins in muscle following acute free fatty acid exposure. J Physiol. 2017;595(16):5587-601.
  81. Faridnia M, mohebbi h, Khalafi M, Moghaddami K. The effect of interval and continuous training on the content of perilipin 1, ATGL and CGI-58 in visceral adipose tissue of obese male rats. Scientific Journal of Kurdistan University of Medical Sciences. 2019;24(1):78-89.
  82. Bosma M, Minnaard R, Sparks LM, Schaart G, Losen M, de Baets MH, et al. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol. 2012;137(2):205-16.
  83. Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, Morinaga H, et al. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem. 2012;287(28):23852-63.
  84. Montgomery MK, Mokhtar R, Bayliss J, Parkington HC, Suturin VM, Bruce CR, Watt MJ. Perilipin 5 deletion unmasks an endoplasmic reticulum stress-fibroblast growth factor 21 axis in skeletal muscle. Diabetes. 2018;67(4):594-606.
  85. Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab. 2014;3(6):652-63.
  86. Shaw CS, Swinton C, Morales-Scholz MG, McRae N, Erftemeyer T, Aldous A, et al. Impact of exercise training status on the fiber type-specific abundance of proteins regulating intramuscular lipid metabolism. Journal of Applied Physiology. 2020;128(2):379-89.
  87. Phielix E, Meex R, Ouwens DM, Sparks L, Hoeks J, Schaart G, et al. High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes. 2012;61(10):2472-8.
  88. Rinnankoski-Tuikka R, Hulmi JJ, Torvinen S, Silvennoinen M, Lehti M, Kivelä R, et al. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change. Metabolism. 2014;63(8):1031-40.
  89. Jevons EFP, Gejl KD, Strauss JA, Ørtenblad N, Shepherd SO. Skeletal muscle lipid droplets are resynthesized before being coated with perilipin proteins following prolonged exercise in elite male triathletes. Am J Physiol Endocrinol Metab. 2020;318(3):E357-e70.
  90. Ramos SV, MacPherson RE, Turnbull PC, Bott KN, LeBlanc P, Ward WE, Peters SJ. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol Rep. 2014;2(10).
  91. Granneman JG, Moore HP, Mottillo EP, Zhu Z, Zhou L. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem. 2011;286(7):5126-35.
  92. Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17(6):759-70.
  93. Laurens C, Bourlier V, Mairal A, Louche K, Badin PM, Mouisel E, et al. Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Sci Rep. 2016;6:38310.
  94. Nara H, Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. International Journal of Molecular Sciences. 2021:9889: (18)22.
  95. Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 1998;16(3-4):249-84
  96. El-Mikkawy DM, EL-Sadek MA, EL-Badawy MA, Samaha D. Circulating level of interleukin-6 in relation to body mass indices and lipid profile in Egyptian adults with overweight and obesity. Egyptian Rheumatology and Rehabilitation. 2020;47:1-7.
  97. Ye J. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes. Front Med. 2015;9(2):139-45
  98. Carbó N, López-Soriano J, Costelli P, Alvarez B, Busquets S, Baccino FM, et al. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta. 2001;1526(1):17-24.
  99. Quinn LS, Anderson BG, Conner JD, Wolden-Hanson T. IL-15 Overexpression Promotes Endurance, Oxidative Energy Metabolism, and Muscle PPARδ, SIRT1, PGC-1α, and PGC-1β Expression in Male Mice. Endocrinology. 2013;154(1):232-45.
  100. Tarantino G, Citro V, Balsano C, Capone D. Age and interleukin-15 levels are independently associated with intima-media thickness in obesity-related NAFLD patients. Front Med (Lausanne). 2021;8:634962.
  101. Nielsen AR, Hojman P, Erikstrup C, Fischer CP, Plomgaard P, Mounier R, et al. Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass. J Clin Endocrinol Metab. 2008;93(11):4486-93
  102. Jonas MI, Kurylowicz A, Bartoszewicz Z, Lisik W, Jonas M, Wierzbicki Z, et al. Interleukins 6 and 15 levels are higher in subcutaneous adipose tissue, but obesity is associated with their increased content in visceral fat depots. Int J Mol Sci. 2015;16(10):25817-30.
  103. Nash D, Hughes MG, Butcher L, Aicheler R, Smith P, Cullen T, Webb R. IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand J Med Sci Sports. 2023;33(1):4-19.
  104. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529 Pt 1(Pt 1):237-42.
  105. Keller C, Hellsten Y, Steensberg A, Pedersen BK. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine. 2006;36(3-4):141-7.
  106. Keller C, Steensberg A, Hansen AK, Fischer CP, Plomgaard P, Pedersen BK. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol (1985). 2005;99(6):2075-9
  107. Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, Saltin B, Pedersen BK. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol. 2001;537(Pt 2):633-9
  108. Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, Pedersen BK. Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287(6):E1189-94.
  109. Croft L, Bartlett JD, MacLaren DP, Reilly T, Evans L, Mattey DL, et al. High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 in response to acute exercise. Applied Physiology, Nutrition, and Metabolism. 2009;34(6):1098-107.
  110. Yfanti C, Fischer CP, Nielsen S, Åkerström T, Nielsen AR, Veskoukis AS, et al. Role of vitamin C and E supplementation on IL-6 in response to training. Journal of applied physiology. 2012;112(6):990-1000.
  111. Cipryan L. The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of high-intensity interval training. J Sport Health Sci. 2018;7(3):363-71.
  112. Khalafi M, Maleki AH, Symonds ME, Sakhaei MH, Rosenkranz SK, Ehsanifar M, et al. Interleukin-15 responses to acute and chronic exercise in adults: a systematic review and meta-analysis. Front Immunol. 2023;14:1288537.
  113. Pistilli EE, Quinn LS. From anabolic to oxidative: reconsidering the roles of IL-15 and IL-15Rα in skeletal muscle. Exerc Sport Sci Rev. 2013;41(2):100-6.

  • تاریخ دریافت 05 شهریور 1403
  • تاریخ بازنگری 17 آبان 1403
  • تاریخ پذیرش 27 آبان 1403